Improvement of the TARDIS configuration system

Proposal by Fotis Tsamis (ftsamis)

Overview

TARDIS is a Monte Carlo radiative-transfer spectral synthesis code for 1D models of
supernova ejecta. In order for TARDIS to carry out the desired calculations it requires as
input a configuration file expressed in YAML which contains all the necessary information.

Currently, TARDIS uses the pyyaml library to parse the configuration file and a complex,
custom-made validator to validate it. The issues with the configuration system in its current
form are many:

e Many tasks that should be done in the parsing phase (e.g. converting to astropy
Quantity objects) are done in the validator.

e The validator is practically reinventing the wheel, since it basically implements many
simple or advanced concepts which are already implemented in existing validating
libraries.

e The custom-made validator comes with a custom schema which adds nothing to
already existing well-defined and broadly-used schemas.

e The code which processes the configuration after validation for the construction of
the final Configuration object from different models is unmodular, it has many parts
which are never used, or don’t have any effect and it is officially described as “a
perfect example for difficult to maintain code”.

My project proposal is to improve the way the configuration system works by:

e Taking full advantage of the capabilities of pyyaml, by doing all the required type
conversions in the parsing phase.

e Replacing both the validator and the schema with an existing, broadly-used library
and format and using the library to the maximum extent in order to cover all the
needs.

e Replacing the after-parsing code which processes different input models with a
well-defined, easily extensible (with more input model formats) system.

e Documenting and testing all of the above.

These changes will be made with retaining as much compatibility with the current
configuration syntax as possible in mind. This means that while the end-users of TARDIS
may not notice any change, TARDIS’ codebase will greatly benefit from replacing complex,
unmaintainable, and undocumented code with modular, well-defined and documented code.

Detailed Approach

Each section below represents a sub-problem that | will be solving with this project.

Parsing the YAML configuration file

A valid TARDIS configuration, except from the default YAML types (int, float, etc), may also
contain a few custom types. These are:
1. quantity, which is expressed as a value followed by a space and then a unit, and is
ultimately converted to an astropy Quantity object
2. quantity_range_sampled, which is expressed as a mapping of (start, stop, num)
key-values, and is ultimately converted to a list of [start Quantity, stop Quantity,
integer] values
3. container-property, which is a container of other types, and does not need any
extraordinary handling at the parsing phase.

All of the above types are currently handled in the validator. This is a problem firstly because
the validator will be replaced in its entirety and secondly because, theoretically, a validator's
task is to validate, not to do extra conversions.

My solution to this sub-problem will be to utilize and extend the custom YAML Loader | have
written in my PR #515 which already handles the aforementioned custom types by defining a
yaml constructor and an implicit resolver to parse quantities, and by replacing the default
yaml mapping constructor to parse quantity ranges and return them as lists instead of dicts.
For the third type, container-property, nothing needs to be done in the parsing phase.

The above solution for this sub-problem is proposed with keeping the configuration file
syntax unchanged as a goal. It is also modular and elegant as it subclasses the default
pyyaml.Loader and changes its behaviour as needed.

Validating the YAML configuration file

As mentioned in the Overview, one of the goals of this proposal is to completely remove the
custom validator currently used and assign the task of validation to a broadly-used
third-party library. One such library for validating a parsed YAML document against a
schema is JSON Schema. Since JSON and YAML are fully compatible, JSON Schema is
able to validate parsed YAML documents and the schema may be defined in YAML too,
which means that JSON format is not a requirement.

JSON Schema has a Python implementation which | am going to use for this sub-problem.
The main workload at this stage, will be to make the appropriate changes in the JSON
Schema validator in order for TARDIS’ custom types (quantity, quantity range_sampled,
container-property) to be recognized as valid types.

More specifically, the validator can accept custom types as parameters and the Python
objects they should map to (e.g. Draft4validator(types={"quantity"”: Quantity}).
Care will be taken for supporting the quantity_range_sampled type as properties of this type
must be a list containing 3 elements of a specific type and order ([Quantity, Quantity,
int]). To support this type, adding it to the “types” parameter of the validator is not enough,
since this will only check if it is of type list. Therefore, a custom validator will be required for
this type to make sure all of the required constraints are met.

https://github.com/tardis-sn/tardis/pull/515
https://pypi.python.org/pypi/jsonschema

For the container-type type, most of the work needs to be done in the sub-problem of
converting the current configuration schema to JSON Schema format, which is described
below.

Converting the configuration schema

The current custom-made schema must be re-written with valid JSON Schema syntax (in
YAML format) for the jsonschema library to be able to read it. Fortunately, JSON Schema'’s
syntax is powerful enough to allow us to cover all of our current schema needs, with the
most tricky one being the container-type type.

The minimum needed features that are used by the current TARDIS schema and therefore
must be supported by the new schema are:

1. A property_type field which defines the valid type of each property.
A mandatory field which defines if a property is required or optional.
A default field which defines the default value of a property.
A help field which is a human-readable description of a property.
Custom property type definition by using the container-property type. The custom
type name is then defined inside the container-declaration object by using a “_’ prefix
and a list of what properties this custom type should provide. Optional properties may
be defined by using a ‘+’ prefix and a list of the optional properties.

ok owbd

The equivalents of JSON Schema to those features are:

1. Atype field.

2. Arequired field, which is a list of all the required properties.

3. A default field. Note that the python implementation of jsonschema ignores this field
by default, and special care will be taken to support setting default values.

4. A description field.

5. Subschemas for custom types, which will also define what properties should be
provided for each type. Taking advantage of the more advanced features of
jsonschema like $ref, and oneOf fields we can define subschemas, one for each
custom type, and require that a property must validate against one of our custom
schemas by using the oneOf field and references to these schemas ($ref field).

Lastly, JSON Schema has many more features which may benefit TARDIS in the future such
as: min/max constraints, regular expression pattern matching and others.

Reworking the input model handling

After the configuration file is parsed and validated, TARDIS does some post-processing
which may include reading data from additional files that provide custom abundance and/or
density profiles. Because that takes place in one long list of python commands with a lot of
case checking, it is not easy to extend this part of the configuration system. There are also
many functions that were doing part of this task but are not used anymore, as well as lines of
code which do absolutely nothing (an example follows).

if plasma_section['helium_treatment'] == 'recomb-nlte’:
validated_config _dict['plasma']["'helium_treatment'] == 'recomb-nlte'’
else:

validated config dict['plasma’]['helium_treatment'] == 'dilute-1lte’

A good first step for solving that will be to cleanup the config_reader module from unused
code. Then, | plan to patternize the rest of the useful code (both in config_reader and in
model_reader) and create a structure of handlers, each for a distinct task. The goal is to be
able to connect a section or a type in the configuration file with a post-processing handler.

This may also be achieved directly in the configuration file by using YAML tags, which would
allow us to specify in the file itself which handler we want to connect with what property or
type, but that is probably not needed since the handler connection to a property will most
likely be something constant, and not the user’s choice. This would also introduce a new bit
of syntax (tags), so it would break compatibility with older versions of TARDIS.

Deliverables

Below is a list of measurable and specific goals which consist solutions to the problems
described in the Detailed Approach section.
1. The enhanced YAML parser implementation.
The new schema written in YAML and following the JSON Schema syntax.
The customized validator implementation based on the jsonschema library.
The reworked config_reader module.
The updated documentation for all of the above.

ok owbd

Tentative Timeline

This is an indicative schedule of how much time | plan to spend on each part of this project. |
plan to work every day for 8 or more hours. In the case | miss a day for any unpredictable
reason, my backup plan is to exchange the missed day with a day of the weekend. Other
than my term’s final exams which usually start on June 15 and will set me back around 5
nonconsecutive days, | don’t have any planned commitments.

May 23 - May 31
Do all the proposed modifications on the the YAML parser and test it. (Details)
Deliverable: The customized YAML parser implementation.

June 1 -June 15
Transcode the current custom schema to JSON Schema syntax formatted in YAML.

(Details)

Deliverable: The new schema.

June 16 - June 30
Create a validator based on jsonschema supporting all the custom types used by TARDIS.

(Details)

Deliverable: The validator implementation.

July 1 -July 19
Remove everything that is unused/legacy code and design a structure for the input model

handling. (Details)

July 20 - August 4
Implement the input model handling structure and migrate the current functionality. (Details)
Deliverable: The reworked config_reader module.

August 5 - August 14

Update the documentation to reflect the changes made and fix any issues found in the
code.
Deliverable: The updated documentation.

August 15 - August 23
Final cleanup and submission of the code.

About me

Personal Information

Name: Fotis Tsamis
E-mail: fisamis@amail.com
Github username: ftsamis

Brief background

| am an undergraduate student at the Department of Informatics and Telematics of
Harokopio University of Athens. | started learning programming as a hobby at the age of 14,
with C being my first language. At about the same time | was introduced to the universe of
Linux and Free Software and, not much later, amazed by its ideals, | started contributing,
first by translating GNOME, OpenOffice and Ubuntu to Greek, and then by creating two
projects. My first functional GUI project was CPU-G, a GPL-licensed Python/GTK+
application for showing a system’s hardware information. Then, in 2010 | co-developed two
fully-featured computer lab administration and management applications (sch-scripts and
Epoptes) to help Greek schools progressively transition to Linux and FOSS. They are now
both used with great success in schools, with Epoptes translated in over 37 languages.

mailto:ftsamis@gmail.com
https://launchpad.net/cpug
https://launchpad.net/sch-scripts
https://launchpad.net/epoptes

