{ "cells": [ { "cell_type": "code", "execution_count": 42, "id": "aced12f7", "metadata": {}, "outputs": [], "source": [ "# Import necessary modules for TARDIS High Energy Workflow\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "from astropy import constants as constants\n", "from astropy import units as u\n", "from scipy.interpolate import interp1d\n", "\n", "from tardis.io.atom_data import AtomData, download_atom_data\n", "from tardis.io.configuration.config_reader import Configuration\n", "from tardis.workflows.high_energy.tardis_he_workflow import TARDISHEWorkflow\n", "\n", "# Configure matplotlib for LaTeX rendering of scientific notation and Greek letters\n", "plt.rcParams[\"text.usetex\"] = (\n", " False # Use mathtext instead of full LaTeX for better compatibility\n", ")\n", "plt.rcParams[\"font.family\"] = \"serif\"\n", "plt.rcParams[\"mathtext.fontset\"] = \"cm\" # Computer Modern fonts for consistency" ] }, { "cell_type": "code", "execution_count": 43, "id": "40cd34ed", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:tardis.io.atom_data.atom_web_download:Atomic Data kurucz_cd23_chianti_H_He_latest already exists in /Users/wkerzend/projects/tardis/tardis-data/kurucz_cd23_chianti_H_He_latest.h5. Will not download - override with force_download=True.\n", "INFO:tardis.io.atom_data.util:\n", "\tAtom Data kurucz_cd23_chianti_H_He_latest.h5 not found in local path.\n", "\tExists in TARDIS Data repo /Users/wkerzend/projects/tardis/tardis-data/kurucz_cd23_chianti_H_He_latest.h5\n", "INFO:tardis.io.atom_data.util:\n", "\tAtom Data kurucz_cd23_chianti_H_He_latest.h5 not found in local path.\n", "\tExists in TARDIS Data repo /Users/wkerzend/projects/tardis/tardis-data/kurucz_cd23_chianti_H_He_latest.h5\n", "INFO:tardis.io.atom_data.base:Reading Atom Data with: UUID = b58b2ef63bf811f08edf96479f911fbd MD5 = 5d80fa4ae0638469bf1ff281b6ca2a94 \n", "INFO:tardis.io.atom_data.base:Non provided Atomic Data: levels, lines, collision_data, collision_data_temperatures, synpp_refs, photoionization_data, yg_data, two_photon_data, linelist_atoms, linelist_molecules\n", "INFO:tardis.io.atom_data.base:Reading Atom Data with: UUID = b58b2ef63bf811f08edf96479f911fbd MD5 = 5d80fa4ae0638469bf1ff281b6ca2a94 \n", "INFO:tardis.io.atom_data.base:Non provided Atomic Data: levels, lines, collision_data, collision_data_temperatures, synpp_refs, photoionization_data, yg_data, two_photon_data, linelist_atoms, linelist_molecules\n" ] } ], "source": [ "# Download and load atomic data\n", "# We recommend using the latest atomic data from the TARDIS data repository\n", "atomic_data_fname = \"kurucz_cd23_chianti_H_He_latest\"\n", "download_atom_data(atomic_data_fname)\n", "atom_data = AtomData.from_hdf(\"kurucz_cd23_chianti_H_He_latest.h5\")" ] }, { "cell_type": "markdown", "id": "91b871a2", "metadata": {}, "source": [ "# TARDIS High Energy Workflow Tutorial\n", "\n", "This notebook demonstrates how to use the TARDIS High Energy (HE) Workflow to simulate $\\gamma$-ray transport in supernova ejecta. The HE workflow is specifically designed to model high-energy phenomena in supernovae, including:\n", "\n", "- $\\gamma$-ray transport through the ejecta\n", "- Energy deposition processes\n", "- Positron-electron pair creation\n", "- Compton scattering\n", "- Photoabsorption processes\n", "\n", "In this example, we'll simulate a **white dwarf merger scenario for Type Ia supernovae** using:\n", "- **Merger model**: Based on the hydrodynamic simulation from **Pakmor et al. (2012)**\n", "- **$\\gamma$-ray transport**: Compared against reference results from **Summa et al. (2013)**\n", "\n", "This represents a double-detonation scenario where $\\gamma$-rays from radioactive decay (primarily $^{56}$Ni → $^{56}$Co → $^{56}$Fe) play a crucial role in powering the optical light curve.\n", "\n", "This tutorial is based on the methodology and results presented in **Dutta et al. (2025)**, which demonstrates the application of the TARDIS HE workflow to Type Ia supernova models and provides detailed analysis of $\\gamma$-ray transport in these systems." ] }, { "cell_type": "code", "execution_count": 44, "id": "26c68bfd", "metadata": {}, "outputs": [], "source": [ "# Load the white dwarf merger configuration (Pakmor et al. 2012)\n", "# This configuration represents a Type Ia supernova from a double-detonation scenario\n", "# Gamma-ray transport results will be compared against Summa et al. 2013\n", "\n", "config_file = \"tardis_config_merger_2012.yml\"\n", "config = Configuration.from_yaml(config_file)" ] }, { "cell_type": "code", "execution_count": 45, "id": "78f23288", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:tardis.io.model.parse_mass_fraction_configuration:Mass fractions have not been normalized to 1. - normalizing\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2600540.0352 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2600540.0352 seconds\n" ] } ], "source": [ "# Initialize the TARDIS High Energy Workflow\n", "he_workflow = TARDISHEWorkflow(\n", " atom_data=atom_data, configuration=config, config_type=\"csvy\"\n", ")" ] }, { "cell_type": "code", "execution_count": 54, "id": "c2e8f56c", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:tardis.model.matter.decay:Decaying abundances for 1357.2980077192738 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1367.9592223127727 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1367.9592223127727 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1378.7041779093443 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1378.7041779093443 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1389.5335322722658 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1389.5335322722658 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1400.4479483313573 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1400.4479483313573 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1411.4480942236141 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1411.4480942236141 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1422.5346433340703 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1422.5346433340703 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1433.7082743370459 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1433.7082743370459 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1444.9696712375471 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1444.9696712375471 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1456.3195234133957 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1456.3195234133957 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1467.7585256572058 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1467.7585256572058 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1479.2873782190497 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1479.2873782190497 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1490.9067868492784 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1490.9067868492784 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1502.6174628416868 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1502.6174628416868 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1514.420123077025 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1514.420123077025 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1526.315490067276 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1526.315490067276 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1538.3042919990899 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1538.3042919990899 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1550.3872627791366 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1550.3872627791366 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1562.5651420786908 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1562.5651420786908 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1574.8386753789077 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1574.8386753789077 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1587.2086140164824 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1587.2086140164824 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1599.6757152296937 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1599.6757152296937 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1612.2407422046379 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1612.2407422046379 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1624.9044641222326 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1624.9044641222326 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1637.6676562049113 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1637.6676562049113 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1650.5310997643548 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1650.5310997643548 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1663.4955822492614 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1663.4955822492614 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1676.5618972934617 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1676.5618972934617 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1689.7308447646096 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1689.7308447646096 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1703.0032308131026 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1703.0032308131026 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1716.3798679214253 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1716.3798679214253 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1729.8615749539522 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1729.8615749539522 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1743.4491772069437 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1743.4491772069437 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1757.143506459154 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1757.143506459154 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1770.9454010227873 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1770.9454010227873 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1784.855705794719 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1784.855705794719 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1798.875272308257 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1798.875272308257 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1813.0049587853237 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1813.0049587853237 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1827.2456301889065 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1827.2456301889065 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1841.5981582761617 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1841.5981582761617 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1856.0634216514402 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1856.0634216514402 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1870.6423058204266 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1870.6423058204266 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1885.3357032443555 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1885.3357032443555 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1900.1445133941886 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1900.1445133941886 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1915.0696428062886 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1915.0696428062886 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1930.1120051374412 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1930.1120051374412 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1945.2725212210269 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1945.2725212210269 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1960.552119123386 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1960.552119123386 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1975.9517342004528 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1975.9517342004528 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1991.472309155192 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 1991.472309155192 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2007.1147940952699 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2007.1147940952699 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2022.8801465911445 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2022.8801465911445 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2038.7693317348094 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2038.7693317348094 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2054.783322198729 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2054.783322198729 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2070.9230982954255 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2070.9230982954255 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2087.189648037642 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2087.189648037642 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2103.583967198661 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2103.583967198661 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2120.107059373039 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2120.107059373039 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2136.7599360388085 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2136.7599360388085 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2153.5436166185177 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2153.5436166185177 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2170.459128541931 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2170.459128541931 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2187.507507309297 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2187.507507309297 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2204.689796554314 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2204.689796554314 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2222.007048108205 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2222.007048108205 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2239.460322063796 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2239.460322063796 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2257.0506868410134 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2257.0506868410134 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2274.779219251802 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2274.779219251802 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2292.6470045658916 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2292.6470045658916 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2310.655136578059 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2310.655136578059 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2328.8047176742366 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2328.8047176742366 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2347.0968588990827 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2347.0968588990827 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2365.532680024661 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2365.532680024661 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2384.113309618509 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2384.113309618509 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2402.83988511224 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2402.83988511224 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2421.7135528720705 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2421.7135528720705 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2440.735468269145 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2440.735468269145 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2459.906795748606 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2459.906795748606 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2479.228708902646 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2479.228708902646 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2498.702390542107 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2498.702390542107 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2518.3290327676145 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2518.3290327676145 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2538.109837043902 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2538.109837043902 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2558.046014273016 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2558.046014273016 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2578.13878486818 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2578.13878486818 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2598.3893788283067 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2598.3893788283067 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2618.7990358141988 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2618.7990358141988 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2639.369005223561 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2639.369005223561 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2660.1005462676258 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2660.1005462676258 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2680.9949280488086 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2680.9949280488086 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2702.0534296376427 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2702.0534296376427 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2723.2773401515487 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2723.2773401515487 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2744.6679588334546 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2744.6679588334546 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2766.226595132025 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2766.226595132025 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2787.954568780626 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2787.954568780626 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2809.8532098789346 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2809.8532098789346 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2831.9238589749007 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2831.9238589749007 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2854.1678671450086 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2854.1678671450086 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2876.5865960787723 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2876.5865960787723 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2899.1814181615327 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2899.1814181615327 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2921.953716557951 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2921.953716557951 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2944.904885297035 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2944.904885297035 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2968.036329357932 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2968.036329357932 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2991.3494647555694 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 2991.3494647555694 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3014.8457186263727 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3014.8457186263727 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3038.526529317818 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3038.526529317818 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3062.39334647438 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3062.39334647438 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3086.4476311273934 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3086.4476311273934 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3110.6908557836846 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3110.6908557836846 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3135.124504517583 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3135.124504517583 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3159.750073058939 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3159.750073058939 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3184.5690688865916 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3184.5690688865916 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3209.5830113209927 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3209.5830113209927 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3234.793431615449 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3234.793431615449 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3260.201873051278 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3260.201873051278 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3285.809891031812 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3285.809891031812 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3311.6190531780917 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3311.6190531780917 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3337.630939423255 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3337.630939423255 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3363.8471421119134 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3363.8471421119134 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3390.269266095001 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3390.269266095001 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3416.898928829227 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3416.898928829227 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3443.7377604766825 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3443.7377604766825 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3470.7874040034512 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3470.7874040034512 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3498.0495152804424 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3498.0495152804424 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3525.5257631853 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3525.5257631853 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3553.217829704849 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3553.217829704849 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3581.12741003616 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3581.12741003616 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3609.256212692296 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3609.256212692296 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3637.6059596071345 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3637.6059596071345 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3666.178386238201 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3666.178386238201 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3694.9752416754054 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3694.9752416754054 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3723.998288747785 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3723.998288747785 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3753.24930413025 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3753.24930413025 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3782.7300784528575 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3782.7300784528575 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3812.442416411315 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3812.442416411315 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3842.3881368764114 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3842.3881368764114 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3872.569073005056 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3872.569073005056 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3902.9870723543127 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3902.9870723543127 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3933.643996992595 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3933.643996992595 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3964.5417236140047 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3964.5417236140047 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3995.68214365421 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 3995.68214365421 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4027.067163405934 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4027.067163405934 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4058.698704134218 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4058.698704134218 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4090.5787021955975 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4090.5787021955975 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4122.70910915712 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4122.70910915712 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4155.091891913298 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4155.091891913298 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4187.729032808892 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4187.729032808892 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4220.622529759768 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4220.622529759768 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4253.774396374305 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4253.774396374305 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4287.1866620773235 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4287.1866620773235 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4320.861372234248 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4320.861372234248 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4354.800588277192 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4354.800588277192 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4389.006387828505 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4389.006387828505 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4423.480864830998 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4423.480864830998 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4458.2261296751 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4458.2261296751 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4493.244309326627 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4493.244309326627 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4528.537547458467 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4528.537547458467 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4564.108004582875 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4564.108004582875 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4599.957858180318 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4599.957858180318 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4636.089302835689 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4636.089302835689 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4672.504550372747 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4672.504550372747 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4709.205829986576 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4709.205829986576 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4746.195388383239 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4746.195388383239 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4783.475489916461 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4783.475489916461 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4821.048416724597 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4821.048416724597 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4858.916468872374 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4858.916468872374 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4897.08196449048 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4897.08196449048 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4935.547239919364 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4935.547239919364 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4974.314649848452 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 4974.314649848452 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5013.386567463857 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5013.386567463857 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5052.765384593499 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5052.765384593499 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5092.453511850374 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5092.453511850374 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5132.453378783114 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5132.453378783114 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5172.767434025016 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5172.767434025016 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5213.398145440457 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5213.398145440457 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5254.34800027952 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5254.34800027952 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5295.619505329947 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5295.619505329947 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5337.215187067301 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5337.215187067301 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5379.137591813367 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5379.137591813367 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5421.389285891388 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5421.389285891388 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5463.9728557802355 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5463.9728557802355 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5506.89090827671 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5506.89090827671 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5550.14607065209 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5550.14607065209 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5593.740990816042 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5593.740990816042 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5637.678337474091 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5637.678337474091 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5681.960800295678 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5681.960800295678 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5726.591090077153 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5726.591090077153 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5771.571938905686 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5771.571938905686 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5816.9061003294755 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5816.9061003294755 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5862.596349525807 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5862.596349525807 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5908.645483468343 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5908.645483468343 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5955.056321101312 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 5955.056321101312 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6001.83170351188 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6001.83170351188 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6048.974494101259 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6048.974494101259 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6096.487578762907 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6096.487578762907 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6144.373866059175 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6144.373866059175 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6192.636287396425 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6192.636287396425 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6241.277797207977 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6241.277797207977 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6290.301373132138 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6290.301373132138 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6339.710016197915 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6339.710016197915 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6389.50675100412 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6389.50675100412 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6439.6946259078395 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6439.6946259078395 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6490.276713211983 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6490.276713211983 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6541.256109348387 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6541.256109348387 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6592.635935072571 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6592.635935072571 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6644.419335653282 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6644.419335653282 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6696.609481062814 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6696.609481062814 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6749.2095661728345 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6749.2095661728345 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6802.222810952685 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6802.222810952685 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6855.652460659536 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6855.652460659536 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6909.501786043739 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6909.501786043739 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6963.774083547276 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 6963.774083547276 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7018.472675502198 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7018.472675502198 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7073.600910338445 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7073.600910338445 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7129.162162785809 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7129.162162785809 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7185.159834084056 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7185.159834084056 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7241.597352185659 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7241.597352185659 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7298.47817197006 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7298.47817197006 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7355.805775455315 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7355.805775455315 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7413.583672007581 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7413.583672007581 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7471.815398558454 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7471.815398558454 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7530.504519823353 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7530.504519823353 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7589.654628514864 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7589.654628514864 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7649.269345566046 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7649.269345566046 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7709.352320354043 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7709.352320354043 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7769.907230916647 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7769.907230916647 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7830.9377841838905 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7830.9377841838905 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7892.4477162044295 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7892.4477162044295 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7954.440792369001 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 7954.440792369001 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8016.920807646784 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8016.920807646784 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8079.891586814381 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8079.891586814381 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8143.356984693253 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8143.356984693253 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8207.320886379932 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8207.320886379932 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8271.787207489439 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8271.787207489439 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8336.759894393783 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8336.759894393783 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8402.242924460466 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8402.242924460466 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8468.240306298669 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8468.240306298669 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8534.756080006486 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8534.756080006486 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8601.794317412669 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8601.794317412669 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8669.359122330008 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8669.359122330008 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8737.454630808264 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8737.454630808264 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8806.08501138081 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8806.08501138081 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8875.254465325537 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8875.254465325537 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8944.967226922086 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 8944.967226922086 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9015.22756370585 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9015.22756370585 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9086.039776734413 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9086.039776734413 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9157.408200848613 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9157.408200848613 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9229.3372049399 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9229.3372049399 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9301.831192213245 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9301.831192213245 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9374.894600461244 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9374.894600461244 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9448.53190233547 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9448.53190233547 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9522.747605616132 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9522.747605616132 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9597.54625349248 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9597.54625349248 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9672.9324248406 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9672.9324248406 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9748.91073449935 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9748.91073449935 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9825.485833557696 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9825.485833557696 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9902.662409639084 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9902.662409639084 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9980.445187183694 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 9980.445187183694 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10058.838927742807 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10058.838927742807 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10137.848430269953 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10137.848430269953 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10217.478531409904 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10217.478531409904 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10297.734105799958 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10297.734105799958 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10378.620066365222 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10378.620066365222 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10460.141364623876 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10460.141364623876 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10542.302990981863 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10542.302990981863 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10625.109975046274 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10625.109975046274 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10708.567385931849 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10708.567385931849 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10792.680332566397 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10792.680332566397 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10877.453964008646 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10877.453964008646 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10962.893469764254 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 10962.893469764254 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11049.004080095983 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11049.004080095983 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11135.791066352147 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11135.791066352147 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11223.259741287677 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11223.259741287677 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11311.415459383363 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11311.415459383363 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11400.263617181043 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11400.263617181043 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11489.809653611428 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11489.809653611428 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11580.059050324087 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11580.059050324087 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11671.01733202693 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11671.01733202693 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11762.690066822632 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11762.690066822632 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11855.082866552119 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11855.082866552119 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11948.201387131292 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 11948.201387131292 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12042.051328904949 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12042.051328904949 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12136.638436993337 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12136.638436993337 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12231.968501640233 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12231.968501640233 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12328.047358570859 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12328.047358570859 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12424.880889351936 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12424.880889351936 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12522.475021743765 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12522.475021743765 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12620.83573006887 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12620.83573006887 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12719.969035579743 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12719.969035579743 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12819.88100681981 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12819.88100681981 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12920.577760000378 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 12920.577760000378 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13022.065459377267 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13022.065459377267 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13124.35031762069 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13124.35031762069 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13227.438596201091 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13227.438596201091 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13331.336605771003 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13331.336605771003 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13436.050706554874 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13436.050706554874 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13541.587308728469 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13541.587308728469 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13647.952872822816 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13647.952872822816 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13755.153910111892 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13755.153910111892 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13863.196983018111 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13863.196983018111 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13972.088705504917 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 13972.088705504917 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14081.835743488102 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14081.835743488102 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14192.44481524621 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14192.44481524621 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14303.922691822641 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14303.922691822641 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14416.27619744802 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14416.27619744802 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14529.512209957658 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14529.512209957658 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14643.63766120564 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14643.63766120564 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14758.659537497306 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14758.659537497306 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14874.584880014709 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14874.584880014709 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14991.42078524235 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 14991.42078524235 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15109.174405407044 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15109.174405407044 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15227.852948919633 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15227.852948919633 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15347.463680802572 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15347.463680802572 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15468.013923148203 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15468.013923148203 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15589.511055563855 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15589.511055563855 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15711.962515616302 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15711.962515616302 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15835.37579929557 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15835.37579929557 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15959.758461469857 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 15959.758461469857 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16085.118116351783 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16085.118116351783 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16211.462437956368 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16211.462437956368 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16338.799160578355 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16338.799160578355 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16467.13607926645 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16467.13607926645 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16596.481050292336 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16596.481050292336 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16726.84199163814 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16726.84199163814 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16858.226883483247 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16858.226883483247 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16990.643768683763 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 16990.643768683763 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17124.10075327225 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17124.10075327225 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17258.6060069562 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17258.6060069562 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17394.167763607027 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17394.167763607027 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17530.794321775444 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17530.794321775444 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17668.494045192405 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17668.494045192405 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17807.2753632894 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17807.2753632894 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17947.146771700933 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 17947.146771700933 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18088.116832796175 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18088.116832796175 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18230.194176203237 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18230.194176203237 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18373.38749932669 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18373.38749932669 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18517.705567889356 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18517.705567889356 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18663.157216471915 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18663.157216471915 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18809.751349039347 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18809.751349039347 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18957.496939499877 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 18957.496939499877 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 19106.403032251696 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 19106.403032251696 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 19256.478742728064 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 19256.478742728064 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 19407.733257965527 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 19407.733257965527 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 19560.17583716439 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 19560.17583716439 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 19713.81581224799 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 19713.81581224799 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 19868.662588441635 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 19868.662588441635 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20024.72564485148 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20024.72564485148 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20182.014535029975 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20182.014535029975 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20340.538887577168 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20340.538887577168 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20500.30840671932 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20500.30840671932 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20661.3328729136 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20661.3328729136 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20823.62214342978 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20823.62214342978 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20987.186152970266 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 20987.186152970266 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 21152.034914273565 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 21152.034914273565 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 21318.17851872055 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 21318.17851872055 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 21485.627136957544 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 21485.627136957544 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 21654.39101952652 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 21654.39101952652 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 21824.48049747286 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 21824.48049747286 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 21995.9059829961 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 21995.9059829961 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 22168.677970085333 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 22168.677970085333 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 22342.807035146303 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 22342.807035146303 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 22518.30383766751 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 22518.30383766751 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 22695.17912086112 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 22695.17912086112 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 22873.4437123303 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 22873.4437123303 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 23053.108524716867 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 23053.108524716867 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 23234.184556383367 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 23234.184556383367 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 23416.682892087738 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 23416.682892087738 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 23600.61470364328 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 23600.61470364328 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 23785.99125062219 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 23785.99125062219 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 23972.82388104129 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 23972.82388104129 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 24161.12403204286 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 24161.12403204286 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 24350.903230611675 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 24350.903230611675 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 24542.173094276724 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 24542.173094276724 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 24734.94533181165 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 24734.94533181165 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 24929.231743961645 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 24929.231743961645 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 25125.044224172143 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 25125.044224172143 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 25322.394759296047 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 25322.394759296047 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 25521.295430343933 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 25521.295430343933 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 25721.758413228097 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 25721.758413228097 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 25923.79597948575 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 25923.79597948575 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 26127.420497051913 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 26127.420497051913 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 26332.644431005952 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 26332.644431005952 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 26539.480344341406 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 26539.480344341406 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 26747.940898724162 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 26747.940898724162 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 26958.038855275823 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 26958.038855275823 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 27169.787075360706 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 27169.787075360706 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 27383.198521352642 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 27383.198521352642 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 27598.286257450854 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 27598.286257450854 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 27815.063450471895 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 27815.063450471895 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 28033.54337064527 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 28033.54337064527 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 28253.739392438547 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 28253.739392438547 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 28475.664995379975 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 28475.664995379975 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 28699.333764863946 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 28699.333764863946 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 28924.759392999407 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 28924.759392999407 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 29151.955679443563 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 29151.955679443563 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 29380.936532251508 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 29380.936532251508 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 29611.71596871054 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 29611.71596871054 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 29844.30811621744 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 29844.30811621744 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 30078.72721313977 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 30078.72721313977 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 30314.98760967413 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 30314.98760967413 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 30553.103768738787 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 30553.103768738787 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 30793.09026685892 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 30793.09026685892 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 31034.961795046955 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 31034.961795046955 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 31278.733159708736 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 31278.733159708736 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 31524.419283563726 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 31524.419283563726 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 31772.035206526605 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 31772.035206526605 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 32021.59608665761 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 32021.59608665761 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 32273.117201083984 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 32273.117201083984 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 32526.613946916565 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 32526.613946916565 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 32782.10184221484 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 32782.10184221484 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 33039.59652693607 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 33039.59652693607 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 33299.11376386715 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 33299.11376386715 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 33560.66943962351 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 33560.66943962351 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 33824.27956559325 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 33824.27956559325 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 34089.96027894643 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 34089.96027894643 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 34357.72784358603 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 34357.72784358603 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 34627.59865117621 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 34627.59865117621 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 34899.58922213502 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 34899.58922213502 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 35173.716206633864 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 35173.716206633864 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 35449.99638563252 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 35449.99638563252 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 35728.44667190743 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 35728.44667190743 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 36009.08411106654 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 36009.08411106654 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 36291.92588261378 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 36291.92588261378 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 36576.989300999456 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 36576.989300999456 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 36864.29181666331 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 36864.29181666331 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 37153.85101711927 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 37153.85101711927 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 37445.68462802244 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 37445.68462802244 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 37739.810514271696 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 37739.810514271696 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 38036.24668106925 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 38036.24668106925 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 38335.0112750564 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 38335.0112750564 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 38636.12258541491 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 38636.12258541491 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 38939.59904497017 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 38939.59904497017 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 39245.45923133983 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 39245.45923133983 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 39553.72186807138 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 39553.72186807138 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 39864.405825764356 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 39864.405825764356 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 40177.53012325154 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 40177.53012325154 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 40493.11392875982 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 40493.11392875982 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 40811.17656106251 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 40811.17656106251 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 41131.73749068385 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 41131.73749068385 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 41454.81634109183 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 41454.81634109183 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 41780.4328898781 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 41780.4328898781 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 42108.60706998521 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 42108.60706998521 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 42439.35897093624 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 42439.35897093624 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 42772.70884003501 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 42772.70884003501 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 43108.67708363071 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 43108.67708363071 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 43447.28426835495 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 43447.28426835495 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 43788.5511223993 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 43788.5511223993 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 44132.49853674802 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 44132.49853674802 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 44479.14756648811 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 44479.14756648811 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 44828.519432097346 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 44828.519432097346 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 45180.6355207224 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 45180.6355207224 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 45535.517387501204 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 45535.517387501204 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 45893.18675689269 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 45893.18675689269 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 46253.66552398195 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 46253.66552398195 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 46616.97575583944 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 46616.97575583944 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 46983.13969287524 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 46983.13969287524 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 47352.179750174946 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 47352.179750174946 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 47724.11851890306 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 47724.11851890306 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 48098.97876766095 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 48098.97876766095 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 48476.7834439062 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 48476.7834439062 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 48857.5556753241 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 48857.5556753241 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 49241.31877127156 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 49241.31877127156 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 49628.09622420013 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 49628.09622420013 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 50017.91171107661 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 50017.91171107661 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 50410.789094844135 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 50410.789094844135 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 50806.75242590046 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 50806.75242590046 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 51205.825943529635 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 51205.825943529635 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 51608.03407742078 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 51608.03407742078 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 52013.401449157434 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 52013.401449157434 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 52421.95287370323 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 52421.95287370323 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 52833.713360947695 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 52833.713360947695 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 53248.70811722999 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 53248.70811722999 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 53666.96254686754 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 53666.96254686754 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 54088.50225372148 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 54088.50225372148 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 54513.3530427855 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 54513.3530427855 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 54941.540921715656 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 54941.540921715656 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 55373.092102468305 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 55373.092102468305 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 55808.0330028803 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 55808.0330028803 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 56246.390248309355 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 56246.390248309355 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 56688.19067322529 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 56688.19067322529 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 57133.461322886025 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 57133.461322886025 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 57582.229454995104 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 57582.229454995104 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 58034.52254133226 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 58034.52254133226 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 58490.368269479724 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 58490.368269479724 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 58949.7945444994 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 58949.7945444994 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 59412.82949062606 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 59412.82949062606 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 59879.50145300961 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 59879.50145300961 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 60349.83899945855 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 60349.83899945855 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 60823.87092214303 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 60823.87092214303 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 61301.626239414414 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 61301.626239414414 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 61783.134197538995 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 61783.134197538995 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 62268.42427252618 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 62268.42427252618 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 62757.52617188309 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 62757.52617188309 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 63250.469836475895 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 63250.469836475895 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 63747.285442362954 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 63747.285442362954 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 64248.003402596034 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 64248.003402596034 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 64752.65436913323 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 64752.65436913323 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 65261.269234702835 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 65261.269234702835 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 65773.87913466587 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 65773.87913466587 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 66290.51544895241 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 66290.51544895241 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 66811.20980398805 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 66811.20980398805 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 67335.994074592 seconds\n", "INFO:tardis.model.matter.decay:Decaying abundances for 67335.994074592 seconds\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Creating packets\n", "INFO:tardis.energy_input.gamma_ray_packet_source:Total energy in gamma-rays is 4.0406859321999453e+49\n", "INFO:tardis.energy_input.gamma_ray_packet_source:Energy per packet is 4.040685932199945e+43\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Creating packets\n", "INFO:tardis.energy_input.gamma_ray_packet_source:Total energy in gamma-rays is 4.0406859321999453e+49\n", "INFO:tardis.energy_input.gamma_ray_packet_source:Energy per packet is 4.040685932199945e+43\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Creating packet list\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Creating packet list\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Total energy deposited by the positrons is 1.3137085975901763e+48\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Total energy deposited by the positrons is 1.3137085975901763e+48\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Entering the main gamma-ray loop\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Entering the main gamma-ray loop\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Total CMF energy is 4.04068593224685e+49\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Total RF energy is 4.0412654767362364e+49\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Total CMF energy is 4.04068593224685e+49\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Total RF energy is 4.0412654767362364e+49\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Total energy deposited by gamma rays and positrons is 2.911439073754442e+49\n", "INFO:tardis.energy_input.main_gamma_ray_loop:Total energy deposited by gamma rays and positrons is 2.911439073754442e+49\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Entering gamma ray loop for 1000000 packets\n", "Number of escaped packets: 260519\n", "Number of scattered packets: 83913\n" ] } ], "source": [ "# Run the High Energy simulation for Type Ia supernova\n", "# These parameters are optimized for white dwarf merger gamma-ray transport\n", "\n", "simulation_params = {\n", " \"time_start\": 2.0, # Start time in days (early in SN evolution)\n", " \"time_end\": 100.0, # End time in days (covers main decay period)\n", " \"number_of_packets\": int(\n", " 1e6\n", " ), # Number of gamma-ray packets (for quick demo)\n", " \"time_steps\": 500, # Number of time steps\n", " \"time_space\": \"log\", # Logarithmic time spacing (appropriate for decay)\n", " \"seed\": 1993, # Random seed for reproducibility\n", " \"fp\": 0.0, # Covering factor\n", " \"spectrum_bins\": 300, # Number of spectrum bins\n", " \"grey_opacity\": -1, # Use detailed opacity calculation\n", " \"legacy\": True,\n", " \"legacy_atom_data\": atom_data, # Use legacy mode for compatibility\n", "}\n", "\n", "# Run the simulation (commented out for demo - use pre-computed results)\n", "he_result = he_workflow.run(**simulation_params)" ] }, { "cell_type": "markdown", "id": "98b8ffe8", "metadata": {}, "source": [ "## TARDIS vs Summa et al. 2013 Comparison\n", "\n", "This section compares TARDIS HE results with reference $\\gamma$-ray transport calculations from **Summa et al. (2013)**. \n", "\n", "### Model Setup\n", "- **Merger simulation**: White dwarf double-detonation model from **Pakmor et al. (2012)**\n", "- **$\\gamma$-ray reference**: Monte Carlo transport results from **Summa et al. (2013)**\n", "- **TARDIS implementation**: High-energy workflow validation against established benchmarks\n", "\n", "### Data Extraction Options\n", "\n", "The TARDIS HE workflow provides two ways to access the $\\gamma$-ray spectra:\n", "\n", "1. **Direct extraction** from the simulation result object (`he_result.escaped_energy_spectrum`)\n", "2. **Loading from disk** using pre-computed high-statistics results\n", "\n", "For this tutorial, we use pre-computed results with 5×10$^7$ packets to ensure:\n", "- **High signal-to-noise ratio** for clear spectral features\n", "- **Faster execution** without waiting for long simulations\n", "- **Reproducible results** for documentation purposes" ] }, { "cell_type": "code", "execution_count": 47, "id": "1ccb73e2", "metadata": {}, "outputs": [], "source": [ "# Data loading - choose your option below\n", "DISTANCE = 10 * u.pc\n", "flux_conversion = 1 / (4 * np.pi * DISTANCE**2)\n", "\n", "# Option 1: From workflow result\n", "# tardis_luminosity_density_df = he_result.escape_energy\n", "\n", "# Option 2: From pre-computed file\n", "tardis_luminosity_density_df = pd.read_csv(\n", " \"merger_2012_100d_500ts_5e7_escape_energy.csv\", index_col=0\n", ")\n", "\n", "# Extract time and energy grids with units\n", "tardis_times_explosion = (\n", " tardis_luminosity_density_df.columns.values.astype(float) * u.s\n", ")\n", "tardis_times_explosion = tardis_times_explosion.to(u.day)\n", "tardis_energies = tardis_luminosity_density_df.index.values * u.keV\n", "\n", "# Create luminosity density and flux arrays with standard units\n", "tardis_luminosity_density = (\n", " tardis_luminosity_density_df.values * u.erg / u.s / u.Hz\n", ").to(u.erg / u.s / u.Hz)\n", "tardis_flux = (tardis_luminosity_density * flux_conversion).to(\n", " u.erg / u.cm**2 / u.s / u.Hz\n", ")\n", "\n", "# Load Summa et al. 2013 reference data\n", "summa2013_flux_df = pd.read_csv(\n", " \"merger_2012_11_09_spectra_gamma.dat\", sep=r\"\\s+\"\n", ")\n", "summa2013_flux_df.set_index(summa2013_flux_df.columns[0], inplace=True)\n", "\n", "# Extract time and energy grids with units\n", "summa2013_times_explosion = (\n", " summa2013_flux_df.columns.values.astype(float) * u.day\n", ")\n", "summa2013_energies = summa2013_flux_df.index.values * u.MeV\n", "\n", "# Create flux and luminosity density arrays with standard units\n", "summa2013_flux = (summa2013_flux_df.values * u.erg / u.cm**2 / u.s / u.Hz).to(\n", " u.erg / u.cm**2 / u.s / u.Hz\n", ")\n", "summa2013_luminosity_density = (summa2013_flux * (4 * np.pi * DISTANCE**2)).to(\n", " u.erg / u.s / u.Hz\n", ")" ] }, { "cell_type": "code", "execution_count": 48, "id": "8da678e0", "metadata": {}, "outputs": [], "source": [ "# Target times for comparison\n", "target_times = [25, 50, 100] * u.day\n", "\n", "\n", "# Find closest time indices, handling out-of-bounds cases\n", "def get_closest_index(times, target):\n", " idx = times.searchsorted(target)\n", " return min(idx, len(times) - 1)\n", "\n", "\n", "# Find indices and extract data at target times\n", "tardis_indices = [\n", " get_closest_index(tardis_times_explosion, t) for t in target_times\n", "]\n", "summa2013_indices = [\n", " get_closest_index(summa2013_times_explosion, t) for t in target_times\n", "]\n", "\n", "tardis_target_times = [tardis_times_explosion[i] for i in tardis_indices]\n", "summa2013_target_times = [\n", " summa2013_times_explosion[i] for i in summa2013_indices\n", "]\n", "\n", "tardis_target_flux = [tardis_flux[:, i] for i in tardis_indices]\n", "summa2013_target_flux = [summa2013_flux[:, i] for i in summa2013_indices]" ] }, { "cell_type": "code", "execution_count": 52, "id": "52e41cd0", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHvCAYAAAC7apbEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XlYVNUbB/DvzLDvyCqK4C6ogOCWmuBuau5paipaqUWpqZlL5lIuaZmaWNkv991y3zJMzHLPUHPXwBVERdZhFmbe3x84F4aZgRnAGdT38zw+Mudu79y5956Z9557joiICIwxxhhjjDHGGGOMMcYY0yG2dACMMcYYY4wxxhhjjDHGWEXFSXTGGGOMMcYYY4wxxhhjzABOojPGGGOMMcYYY4wxxhhjBnASnTHGGGOMMcYYY4wxxhgzgJPojDHGGGOMMcYYY4wxxpgBnERnjDHGGGOMMcYYY4wxxgzgJDpjjDHGGGOMMcYYY4wxZgAn0RljjDHGGGOMMcYYY4wxAziJzhhjjDHGGGOMMcYYY4wZwEl0xhhjjDHGGGOMMcYYY8wATqIzxhhjjDHGGGOMMcYYYwZwEp0xxhgzUVRUFFxdXeHr6yv8c3V1hUgkgpOTk1Z5pUqVEBgYqLOOrKwsODk5wd3dHbm5ucVur379+vDy8oJIJIKNjY2wbi8vLzg5OSEkJASzZs1CTk5Oicv5+PjAy8sLderUwaBBg7Bz506o1Wqjtztr1ixhulqtxqpVqxAVFQUPDw94e3vDz88PoaGhGDZsGJYvX64Tkynv8bPPPtOaZ9iwYfD19YVEIoFIJIKvry/at29f4n4q+s/e3h4zZswwKi5zKs/9ySxv5cqV8PX1hY2NDUQiUZnXJ5fLsXnzZnTr1g2+vr7w8PCAl5cXunbtiri4OIPLXb58Gb1794aPjw+8vb3RvHlz/Pzzz8Vu699//0WLFi0gEomQlJRkcD6VSoUtW7Zg2LBhaNCgAapUqQJvb280atQIX331FR+vMP665OTkhOjo6HI/bsrb9evXMXr0aAQHB6NKlSpwcXGBv78/XnvtNcyePRvnz5+3dIgVilwuR/369bXqKsYYY4w9p4gxxhhjJomMjKSVK1dqla1cuZIA0PTp07XKDx8+TAEBATrr+PHHHwkAAaB169aVuM3ExEQCQJGRkVrlGRkZFBMTQwCoadOmlJeXZ9RyFy9epClTppC9vT01btyYbty4YdJ2iYiGDRtGYrGYlixZQjk5OUREpFQq6cCBAxQYGEgA6MKFCyW+N2O2VVhAQAAZ+gpjzDqGDh2q8zlVBOW9P1nxAgIC9J6b5S0yMtLg8WqKDz/8kADQ5MmTKTMzk4iIbt26Re3btycA9O233+osc/bsWXJycqK+fftSRkYGqVQqWrx4MQGghQsX6syfm5tLU6ZMoUqVKpGnpycBoMTERIMxPXz4kABQeHg4Xbx4kYjyj9mffvqJxGIxtWjRQuea9DIy5ro0ffp0Gjp0qPC6vI6b8vT111+TjY0NTZo0ie7evUtERGq1mv777z8aO3YsiUQio+u0l0VOTg75+flRaGiopUNhjDHGWBlxS3TGGGPMAn766SeEhYUJf5eWi4sLFi9ejMDAQJw6dQp79+41arng4GDMnj0bf/zxB65cuYLIyEjcvXvX6O2eO3cOK1euRL9+/fDhhx/CwcEBAGBlZYVOnTph7dq1pXo/Lyven6wkarUarVq1wpw5c+Ds7AwAqFatGjZu3Ah7e3tMmDAB6enpwvxEhGHDhkEikWDFihVwcXGBWCzG6NGj8dprr2HSpEm4efOm1jbGjh2Lixcv4ty5c6hfv77Rsf30008IDg4GkH/MDh8+HL1798axY8dw5MiRsr95ZnGxsbEYP348FixYgLlz56JKlSoAAJFIhOrVq+Obb77B559/DgBQKpWWDLVCcXBwQFJSEv7++29Lh8IYY4yxMuIkOmOMMWaiNWvWoFevXkbN27RpUxw6dEir7NKlS0hISMAvv/wCW1tbxMfH6ySzTCGRSISE/KVLl0xatnHjxpg/fz7u3buHMWPGGL3c5cuXAQCVK1fWO71ly5YYNmwY3NzcTIrHHFasWKHTVYylPc/7k5lH586d8emnn+qUe3p6ol69epDL5Th79qxQfvToUZw7dw5dunQRku4aAwYMgEKhwI8//qhVPnnyZOzYsQNVq1Y1KiY3Nzf8+eefwvWnsICAAADQSuwzwz777DOsWLHC0mHolZycjAkTJqBOnTr48MMPDc43fvx4uLi4mDGy54O1tTUkEomlw2CMMcZYGXESnTHGGDNRtWrV4OrqatS8Dg4OqFmzplbZTz/9hN69e6NGjRro2bMniAgrV64sU0yafs19fHxMXnbYsGFwdHTEtm3bjG6N7ufnBwDYtm0b0tLSdKaLRCKsWLHC6GScOcyYMQPR0dEQi8UQiw1/BcrMzNTpe/2TTz4Rpr/yyitwc3ODjY2N0FpXrVZj6dKlaNSoEfz8/FClShVERERg0qRJuHbtWomxlWZ/fvfdd0Kchfvdv3PnjtD3e+E+rePi4rTKL1y4gFGjRqFatWpwc3NDr169cO/ePRAR5s2bh7p168LNzQ3t27fH1atXteIpz3VlZmZi7ty5aNmyJapWrQp3d3fUrFkTEyZMQFZWVon7rjCFQoF58+ahQYMGqFSpEtzd3dG6dWutPsDXrFkDX19f3LlzR9hXmn83btwodv3lGaupunXrhk6dOumdplAoAAAeHh5CmebmXaNGjXTmj4iIAACdvtQ1iW9jWVlZoWXLlnqnnTp1CnZ2dmjWrJlJ6yyNosfjv//+i7Fjx6JWrVpC3+Lx8fFGf376rgFTpkwRpuu7BpSWZhyEkq5LgOnnfI8ePeDs7AyRSARHR0f07t0bADBlyhRUqlQJYrEYvr6+xfapD+TXWTKZDL179y62n3Y7OzscOXIEnTt31ipXKpWYP38+QkJC4O3tDS8vL0RGRmLHjh1a85XXdaVov/LXr19H7969Ua1aNTg5OSEiIgLbtm3Tid/Y48PY4+3AgQN6PxfAtDqjLPtv5MiRCAwMFPaT5oYtY4wxxkrBop3JMMYYYy8IQ32iF6VQKMjLy4sOHTpEREQHDx4kAFSlSpVi+w4urk9dhUJB/v7+5O7uTg8ePDB6ucI0/e8W7cvW0PJyuZzq1KlDAMjT05MmTZpEf//9N6nV6mK3U5xn3Sd60T6HS/LGG28QADp16pTOtPfee4/GjRsnvJ46dSo5ODhQfHy8UHbw4EFycXExqv/1suxPQ317Dx06VG+f1pryDh060IkTJ4iIKCEhgZydnalJkyb01Vdf0d69e4W+jqtWrUp16tQhlUplcBtlWdfp06cJAH355ZekVCpJrVbTn3/+Sb6+vtS8eXO929VHoVBQu3btyNXVlfbt20cqlYqkUil9+umnBIDmzJlj1H4rTmlifdZ9Wz98+JBsbGwoODhY63jRHL/r16/XWSY9PZ0AkKOjo8H1auIurk/0olQqFf3333/0/vvvk6OjI23cuNHoZf/++28aOHAgvfbaa7R7926d9R44cKDEdWiOx9atW9OuXbtIpVLRnTt3yNXVlQ4fPmzy56fZhydPntTZ1qhRo2j8+PFGvbfirksrV67UW17ccWPKOX/9+nVycnKiypUra9UPb7zxBn388cdGxa/pd9+Uz1NDc146OzvT/v37iSj/ejd37lwCQLNmzTL4Psp6jdLsw9DQUDp8+DCp1WrKyMigQYMGEQCdsU1MPT5KOt6Kzlf4czG2zijL/mvXrh39+eefRJR/HPj7+1OVKlVILpcb+LQYY4wxVhxOojPGGGPlwNgk+s8//0zVq1cXkl0qlUpICu/du9fgcoaSMPfv36d3332XWrduTWfPnjV6uaL69+9PAGj+/PlGL3/lyhVq1qyZMEAqAKpcuTK9/fbbWokBY2m2ZW1tTT4+Pgb/icXiEpPo+tbh6OhoUhL9999/JwA0bNgwrfKsrCxycXGhq1evCmVBQUHUqFEjnXXMmDFD74CP+pR2f5Y2if7VV19plWsSS2PGjNEqnzx5MgEQklnlva6LFy/S66+/rrPupUuXEgAhcVSSr7/+mgDQggULdKY1btyYrK2thcEQiUqXRC9NrM86iT5t2jQSi8X022+/aZV36NCBANCOHTt0llEqlcIxplAo9K7X1CT67t27ydnZmQBQjRo1aOfOnUa/hz179pCNjY0Qk1gspt9//12YvnPnTpOS6DNmzNAq37RpE925c8fkz+/w4cMEgIYMGaJVnpGRQS4uLgYHZC6quOuSi4vLM02iExGtWLFCSEqrVCr69ttvKTw83OhkalBQEAGgX3/91aj5C9Ocl1OnTtWZ1qxZMxKJRDp1V3ldozT7cPny5VrlOTk5VKlSJXJxcREG6SUy/fwu6XgrOl/hz8XYOqMs+6/otVCzn44cOaKzLsYYY4yVjLtzYYwxxszop59+wvDhw4VH4sViMaKjo4VpJTl27JjQ9YSDgwP8/Pxw4sQJLF68WG+3DcbSdAdT3KP6RdWtWxcnTpzAn3/+iTFjxqBWrVpITk7GTz/9hKioKPTo0QO5ubkmx9KiRQukpKQY/Ofv71+qdUyYMMGkONq0aYO6deti06ZNWv06r1u3Do0bN0adOnWEssDAQPzzzz+YPn06UlJShPLp06fjgw8+MGp7z2p/GtKqVSut19WqVQOQ31VFYZouPm7fvv1M1hUcHIxdu3bprDMoKAgAcP78ecNvohDN4Ktdu3bVmfbKK69AqVRi//79Rq3LkPKKtbycOHEC8+bNw6xZs9C+fftSrcOUc7443bp1Q2ZmJlJTU/HRRx9hwIABeP3115GdnV3sck+ePMGoUaOwePFiZGRk4O7duxgzZgwmT54szHPw4EF07NjR6Fg6dOig9bp///6oWrWqyZ9fVFQUgoODsWXLFjx+/FgoX7NmDVq2bKnTVVdJ9F2XFi9ebNI6SmPYsGHo27cvfvvtN0RHR+Ozzz7Dhg0bYGNjY9J6SnOsaM5LfeOI9O3bF0RkcODk8rpGFe1exsHBAVFRUcjMzMTBgweF8tKe34aOt+IYW2eU5/7T7CdTBhFnjDHGWAFOojPGGGNmcvfuXcTFxQlJc41hw4ZBJBJh9+7dSE1NLXYdhZMwjx49wpQpU3DhwgV07NgRT548KXVs9+/fB1DQN7cpWrZsiUWLFuH69eu4cuUKpkyZAkdHR+zatQvz5s0rdUwVwahRo5Cbm4vVq1cLZd9//z1GjRqlNd/SpUvRrFkzzJo1C1WqVEGLFi0wf/58reSIscy1P728vLReaxJqRcttbW0BADk5Oc9sXT///DM6d+6MmjVrwtvbG76+vujbty8AQCqVGvV+NH0iR0VFafVz7uvri3Xr1sHR0RHJyclGras45RFrebh06RK6deuG0aNHY+rUqTrTNYPQ6vvcNGWOjo6wsrIq17i8vLzwwQcf4PPPP8eePXu0kuH6/Pjjj1i7di1GjRoFFxcXVKlSBQsXLoS7uzvu37+PixcvokGDBrh7967O56rp47soX19fg9sz9fN77733IJPJtG5yfvfdd3j//feN2R0VxvLly1G1alWsXbsWn3zyCerWrWv0slWqVAEArRsJxtKcl5p16Ftv0XESNMrrGqWvXtMkuYuOg1Ca87u4480QY+uMsuw/b29vrdea/aQZQ4ExxhhjpuEkOmOMMWYmq1atglgsRuPGjbUSQc2aNYO1tTWUSqXBFmX6ODg4YPbs2WjXrh0ePnyIBQsWlCouqVSKs2fPAshPQJZF3bp1MXv2bGzatAkAcODAgTKtrzzNmDEDq1atMmmZoUOHwt7eHt9//z0A4Pjx43jw4AF69uypNV+NGjVw4sQJnDlzBp988gkePXqETz75BLVq1dLbstFYZdmfmqcLDDE0iGFJgxuW97o+++wzvPHGG3B1dcXRo0eRmpqKlJQUvQP/GSMhIUGntW9aWhqys7Mxbdq0Uq3zWcVaWv/++y/atm2L4cOH46uvvtI7j6b17L1793Smacrq1av3zGLs1q0bAOgMflhUZGSk3uvOO++8g7i4OPz8888YPHgw/P39dT5XQ/vd0HFXms9vyJAhcHJywvfffw+1Wo3Dhw9DKpWiS5cuxb4vY0VHRyM+Pr5c1lXcOe/u7o7w8HAAwMaNGyGXy41eb5s2bQAA586dK1uAJirPa1RRMpkMgHbr+tKe36WJ51nVGWWNizHGGGOGcc3KGGOMmQERYeXKldi2bZveLko2bNgAwLguXYpauHAhxGIxli5dirS0NJOXX758OXJzc9G3b1+jW6L/+eefxXarokm6FNd6+Xng7u6O/v3748qVKzh8+DC+++47vP3227C2ttaaT6VSAQAiIiIwZ84cXLt2DTt27IBSqcTo0aNL3E5Z9qfmBkxRDx48KHG7FUFsbCwAYMmSJaV6EkJDkxC+c+eOzjS1Wo1Dhw6VeZ+UV6xlkZCQgDZt2mDkyJGYP3++UJ6UlCQ8UQIA7dq1AwD8888/Ouv4+++/AaDUXcBo/P7778INnqIcHBwAlNx6uVmzZnrL69WrhytXrkAkEsHR0bFMcWqU5vNzcXHBoEGDkJiYiAMHDmDZsmV47733LJqgLM05v3LlSty/fx+TJk3CuXPnSnxCoLDhw4fD0dER27dvBxEZnO/GjRto0qQJFi5cKJRpzkt9XYhoyp7lzRwAep9A0ZwrtWrVEsrMeX4bW2dUhP3HGGOMsXycRGeMMcbM4PDhw8jNzUWnTp30Tn/99dfh4eGBy5cv4/jx4yatOyQkBAMHDkRWVhYWLVpk0rLHjx/H1KlTUaVKFXzzzTdGL5eXl4e7d+/izJkzeqdr+o5t3ry5SfGYw6xZs/D2228bPf97770HAJgzZw5++eUXvPvuuzrz1KxZEydOnNAq69GjB+rXr2/UjY2y7M+qVasiNTVVq2WpTCYzuK6KpugNCY2kpCST1jNkyBAAwObNm3Wm7dmzB507dxYSV0B+VyaFE5ErV67Eli1bzBIrkH9D5NGjRyYtc/r0abRt2xYff/wxZs6cqTVtxowZWL58ufD61VdfRWhoKPbt24esrCyteTdu3AgbGxu9x7Ip/vjjD8ycOVNvC+jffvsNgOEkeUn8/Pywfv164QZSeSjt56fpumXWrFk4cOAAhg8fXm4xlYap5/yNGzcwZcoUbNiwAZ9//jmaN2+ORYsWafUHXhxfX18sXrwYV69exbfffqt3HiLCpEmTcOHCBa1udgYPHgwA+OWXX3SW+eWXXyASifDWW28ZFUdp/frrr1qvMzMzcfjwYbi4uGj1Z16e53dJjK0zKsL+Y4wxxlg+TqIzxhhjZvDTTz9h8ODBkEgkeqfb2Nhg4MCBwrym+vzzz2FjY4MlS5ZoDYJpyOXLlzFp0iS0bdsWQUFBOHLkSIkDoekzYMAAHDhwQOhjNS8vDwcPHsTgwYNRuXLlMnef8Syo1WqtZGpJmjZtivDwcMTFxaFNmzbC4GxFTZkyBbdu3QKQn1DauXMnLl68iKFDhxq9rdLszz59+iAvLw/z58+HSqVCTk4Oxo0bh8qVKxu9XUvSJInGjBkjHLvnz5/HrFmzTFrPBx98gI4dO2LZsmXYvHkzVCoViAiHDx/GiBEj8Nlnn2m1Lg0JCUFqaiqSk5ORnZ2NuXPnlthSvbxizcnJQc2aNeHn54dTp04ZtcyxY8fQvn17+Pj4QCqVYsaMGVr/EhIStOYXiURYuXIlVCoVhg8fjqysLKjVanz77bfYv38/5s2bZ/LAmPpcuXIF7777rtCyV6FQ4Oeff8b48ePh4uJisLuZkri4uECtVusMjlgWpf38QkJC0KJFC5w8eRK9e/eGp6dnucVUGqac83l5eRg4cCDmzJmD2rVrw8rKCuvXr4eTkxOio6ONvpHz9ttvIzY2Fp988gmmTJkifN5EhAsXLqBv377Yv38/du7cicDAQGG5Dz74AO3atcPSpUuFgX0VCgXmzZuHkydPYubMmWUaFNsYmzZtwh9//AEiQmZmJt5//33k5ORg8eLFcHZ2FuYrr/PbWMbUGRVh/zHGGGPsKWKMMcZYqf3999/k4+NDLi4uBIAcHR3Jx8eHduzYQURE9+/fJx8fH5JIJOTm5kaNGzfWu57g4GBydXUlAGRlZUU+Pj508uRJYZqnpycBIGtra/Lx8aHu3bvrrGP06NEEgNzd3cnHx4fq1auns5y3tzd5eHhQzZo1aeDAgbR9+3ZSqVQGYyq6/MyZM4mIKDs7mzZu3Ehvv/02hYSEUOXKlcnb25tcXFyoYcOG9PHHH9ODBw+M3o/6tjVt2jSteaKjo8nHx4fEYjEBIB8fH2rXrp0wvUqVKmRjY0MASCQSka2trd5/EomEhg4danRsREQ//vgjAaDdu3frnb53714aNGgQ1a5dmypXrky+vr7UuHFjWrZsGeXl5ZW4/rLsz7y8PPriiy+oRo0a5ObmRk2bNqUDBw7Q0KFDCQB5enpSly5dKCEhgXx8fMjOzk4oHzlyJMlkMvLx8SFHR0fh+OnSpQsRETVs2FA4tl1cXKhGjRpEROW6LoVCQXPmzKG6deuSvb09VatWjXr27ElLly7VOqcyMjJK3I8KhYIWLFhADRs2JHd3d6pSpQq1aNGC1q9frzPvzZs3qU2bNuTh4UF+fn40ZMgQkslkJa7f2FhXrFhBPj4+ZG1tLRyvI0eOJCIiuVxOjRs3Jl9fX7p8+XKJ74uIqEePHgSg2H/Tp0/XWe7ixYvUs2dP8vLyIk9PT2ratClt3bpV7zZOnjxJPj4+WnF7enqSj48PTZw4UWf+hw8fUmxsLHXo0IECAwPJy8uLnJycqG7duhQTE0OJiYlGvTd9Hj16RB999JFR8+o7Hn18fHS2X5Zjbd26dQRAuC4bS9+1zcfHx+CxVtxxo2HsOT958mTy8PAQ1vPHH38QEVGdOnXI1taWAJCrqyu98cYbRr+f69evU0xMDNWtW5d8fX3Jx8eHQkJCaMKECQY/b7lcTl9++SU1aNBAOA5bt25N27Zt05qvPK8rRESRkZEEgJKTk2nQoEEUEBBATk5OFB4eTr/88otOnMYeH8Yeb/v379eZTxO3KXVGWfbf6NGjiYiocePGWvupTp06JX/YjDHGGNMiIiqmYzvGGGOMMcYYM7MdO3YgMzNT6KbH0rZu3Yr58+fj9OnTlg6FGSkqKgpHjhwpth93xhhjjDFjcXcujDHGGGOMsQpl//79CA4Ottj25XI5pFKp8Pr7778X+kZnjDHGGGMvH06iM8YYY4wxxiqU48ePIzQ01GLb37hxI/r37w8iwoEDB3D9+nVh3ArGGGOMMfby4SQ6Y4wxxhhjrMJISUmBq6srrK2tLRaDt7c3Tp06BS8vL3z88cfYvHkzbG1tLRYPM97KlSvh6+uLY8eOAQB8fX0xatQoC0fFGGOMsecd94nOGGOMMcYYqzDOnDmDY8eOYfTo0ZYOhTHGGGOMMQCcRGeMMcYYY4wxxhhjjDHGDOLuXBhjjDHGGGOMMcYYY4wxAziJzhhjjDHGGGOMMcYYY4wZwEl0xhhjjDHGGGOMMcYYY8wATqIzxhhjjDHGGGOMMcYYYwZwEp0xxhhjjDHGGGOMMcYYM4CT6IwxxhhjjDHGGGOMMcaYAZxEZ4wxxhhjjDHGGGOMMcYM4CQ6Y4wxxhhjjDHGGGOMMWYAJ9EZY4wxxhhjjDHGGGOMMQM4ic4YY4wxxhhjjDHGGGOMGcBJdMYYY4wxxhhjjDHGGGPMAE6iM8YYY4wxxhhjjDHGGGMGcBKdMcYYY4wxxhhjjDHGGDOAk+iMMcYYY4wxxhhjjDHGmAGcRGeMMcYYY4wxxhhjjDHGDOAkOmOMMcYYY4wxxhhjjDFmACfRGWOMMcYYY4wxxhhjjDEDOInOGGOMMcYYY4wxxhhjjBnASXTGGGOMMcYYY4wxxhhjzABOojPGGGOMMcYYY4wxxhhjBnASnTHGGGOMMcYYY4wxxhgzgJPoL5BJkyahVq1aEIlEiI+Pt3Q4Bv3xxx/YvHmzpcNgFjJkyBBUq1YNIpEISUlJlg6HFaJSqTB37lzY2tpi1apVlg7nuXDs2DGEhYXBxsYG0dHRQvlvv/2GHTt2WCwu9vzgups9D7jurrhexrr7+++/h0gkwowZM0q1PNfdz4f09HQMGjSoQl53FAoFwsLCUKlSJQQGBlo6HIM014fk5GRLh8IsICkpCWFhYXByckJUVJSlw2FF3L17Fx07doRIJLLI9p/FNbaifCcxdI1OTk7G3LlzoVKpSr1uTqKXs//++w+TJk1CkyZN0KhRI9SrVw+vvfYajh49qjPvjBkzUK1aNYSFhWn9a9OmTam2PW/ePPzvf/8r61t4platWoWRI0eiZcuWSEpKgo2NjdZ79/X1hUgkQnBwsFBWrVo1rS+4AJCRkQEHBwe0a9dO73Zu3rwpnDQikUhYV/369eHv74+WLVti7969Wst88803CAsLg0gkQqVKlRAWFoaQkBDUqlUL7dq1w6JFi5CVlaW1TG5urk7cH3/8sTCdiLB69Wq88sorCA0NRVhYGBo0aIAuXbpgzpw5yM7OLtV+PH/+PGJiYtC4cWOEhYUhKCgIffv2xfnz53XmjY6ORq1atXSOs0GDBhm9vRMnTqB169aoX78+6tSpg1GjRiEjI6NUsa9ZswazZs0q1bIaz2q/Pg9MucYAwJUrV9C1a1fUq1cPderUwZtvvon79+/rzHfjxg28+uqr2Lp1KxQKhcHtX7x4EWPHjkV4eDjCw8MRFBSEZs2aYf369aV+T1KpFCtWrEC7du3QuHFjNGjQAGFhYVi0aJFOLElJSXByctI5nsPCwgzug6LkcjmmTJmCunXrIiQkBE2aNMGePXtKFXuLFi2QkJAAPz8/rfImTZpg3rx5mD17dqnWy8zL1OPK2PPKGFx3F3jR6+74+HghxqL/bt68qTN/aetepVKJrVu3omvXrggPD0fDhg3RoEEDzJgxQ2dfGIvr7rJ5EetuAIiKitI67zX/Cp9PGuVV9z558gTTpk0rU9xcd1d8Bw8eRHh4OM6dO1fivKbUyatWrUJISAhCQkIQHByMBQsWQK1WmxyfjY0NEhIS0L17d5OXNRelUolu3brh7t278PX1xYwZM+Dr66t1rtrY2Oh8/3FyctK5qb98+XKIRCKsXbtW77b01cVhYWGoXbs2qlevjiFDhuDOnTtay7Rp00a4Oav5rdqwYUPUqVMHAwcOxMGDB3W2s3nzZp24C19HHzx4gAkTJqBhw4ZCDKGhoRg2bBi2b99e6n2pUCjw+eefIygoCEFBQQgICMA777yDhw8f6sx7/fp19O/fH9WrV0fdunXRoEEDLFu2zKjtJCcn44svvkDz5s2Fa3VkZCR27dpVqrgDAwORkJCAxo0bl2p5jWe1Xys6IsKBAwfwxhtvICIiAqGhoQgODsbYsWORmpqqdxljrzHr169HixYtSkxeb9q0CX369EFISAjCwsJQp04d9O/fH5cvXy7Te3sW11hjv5Pos2rVKoPfke3s7DB69GiT1mfoGu3r64vbt2+je/fuUCqVJq1TQKxcderUiRo1akT37t0jIiKFQkGjRo0isVhMO3fu1Jp3+vTptHLlynLd/uHDhwkAHT58uFzXWx4SEhLIxsaGzp8/T0REiYmJFBAQoDXP9OnTCQAlJiYKZStXrqShQ4dqzbds2TKysrIikUhE//33n8FtDh06lIoe5lKplAYMGEBisZh+//13nWUAaG0vLy+P4uLiqGHDhhQQEEB///23zjL64iYimjp1Kjk6OtKRI0e0tj9mzBgCQNevXzcYe3Hq1q1LnTp1oidPnhARUXZ2NvXo0YPs7Ozo9OnTWvMOHTq0TMfD2bNnyd7enr799lthW6+++iq1aNGC8vLySrXOlStX6t1fxnpW+/V5YMo15vbt2+Tp6Ukff/wxqdVqUiqV1L9/f6pduzZlZmZqzTt8+HDatGmTcA0xdG2aPn06+fn5ae3jb7/9lgDQunXrSvWeNm7cSFZWVrRr1y6h7NChQ2RjY0N9+vTRmjcxMZEiIyNLtR2N/v37U7169ejhw4dERLRz506SSCS0d+/eUq8zICBA5zqVnJxMDg4OdODAgbKEy8zAlOPKlPPKWFx3a3tR6+7Dhw/r7BNDylL3Hj9+nADQd999J5QlJCRQpUqVqFmzZlx3W8CLWHcTEUVGRhp9PJRX3RsTE0M9evQgADR9+nQTI9bGdXfF1apVKzp79qzB67SGKefLd999R3Z2dnTq1CkiIrpx4wZ5eXnRJ598Uuo4hw4dqlMnVhQTJkygJk2aCK+nT5+uc84EBATofP+JjIzU+T7StGlTsrKyKvG7UtG6mIjo6tWr5O3tTUFBQZSbm6s1TVOvFN5eRkYGff3112RnZ0d9+/YlmUymsx19cUulUqpVqxa1adNGuM4QEV2/fp2CgoKoZcuWxcZenNdff518fHzo0qVLRESUnp5OLVu2pODgYJJKpVrbcnNzozfeeIPkcjkRER09epTs7Oxo5syZJW5n5MiR5O/vT9euXSMiIrVaTV988QUBEL4PlEZkZGSpfz89y/1a0SUnJxMAmjp1qvDdKTExkWrVqkXVq1cv9TUmPT2dXn31Vbp586be77yFBQQE0JAhQ4RzJz09ndq0aUM+Pj70+PHjUr+3Z3GNNfY7iT76fjcQ5X8G1tbWdPLkSRPeXQFD1+iIiAiaNGlSqdbJSfRy1qlTJ9q2bZtWmVQqJSsrK3r11Ve1yl+2JHq/fv2oV69ewuuUlBQaMmSI1jz6TuKDBw/SV199pTVf48aNKTY2lgDQp59+anCbhi5Kf//9NwGg6OhonWn6Kn8ioszMTKpXrx55e3tTampqiXETEXl4eFDPnj111pWXl0dubm5lSqKfPXtWq+z69esEgAYPHqxVXtYkeps2bahevXpaZZof6GvWrCnVOsv6Q/xZ7dfngSnXmGHDhpGbm5vWF9Z79+6RWCymWbNmac2rVCqJiEqs9FauXEnff/+9Trmrq6vW+W2KjRs3Uvfu3XXKBw0aRADo5s2bQllZk+hHjhwhALRp0yat8k6dOlHNmjVJrVaXar36fogTEX344YcUFhZWqnUy8zHluDLlvDIW193aXtS625Qkelnq3uPHj1NISIhO+dSpUwkAHTp0yOiYC+O6u/RexLqbyPgkennVvefPnydfX1/6559/nlkSnYjr7opAc2yXlOAx9nzJzMwkFxcXGjVqlNbyc+fOJSsrq2Jv7BanoibRnzx5QjY2Nlo36dauXUtr167Vmk9fMvrjjz+mc+fOCa8vXLhArVq1ooEDB5Z4w9NQXfzhhx8SAIqPj9cq15dE1/j1119JJBLprfP1xb17924CQDt27NCZ/5dffil1sjc+Pp4A0OzZs7XKNde1hQsXCmXR0dEEgO7evas177Bhw8jGxoZSUlKK3dbIkSO11keUn0ivWrUq+fv7lyp+orIl0Z/Vfn0eJCcnk7u7O6lUKq3yH3/8kQDQTz/9JJSZco1RqVTCOktKovfv35+SkpK0yrZt20YAdG7Cm6K8r7GF11maJPrNmzfp2LFjOuWzZ8+m8PBwo9dTlKFr9C+//EK2trb04MEDk9fJ3bmUs927d6Nnz55aZfb29qhUqRKePHlSrttKS0vD4MGDhcceBgwYgEePHunMl5iYiHfffRehoaEIDw9HaGgoPvroI2RmZgIAHj9+jJCQEIhEInh7e6NTp07Csm3atIG7uzuqV6+OuLg4qFQqTJs2DQ0bNkSjRo0QEhKC6OhoJCQkFBtrTk4O9uzZo7VuHx8frF69usT32aFDB4wfP154ff78eXh4eOD9999HvXr1sGrVKpMfw8vLyxPeu7GcnZ3xxRdfIDU1FV999ZXR27l16xaISKtcIpHg0qVLpe5D7/z582jUqJFWWZUqVQCgXI+z1NRUxMfHo3379lrlTZs2hbOzs1H94966dQvdu3dHpUqVEBERgVGjRkEqlZYpLmP36+zZs3X6GtZ0F1C0H8z+/fsLjxQeOXIEPXv2RFBQEOrVq4e9e/dCpVJh0qRJiIiIQEBAgNajvllZWUIXBIGBgfj999/Rrl07+Pv7o3Xr1rh27RoePnyIAQMGIDg4GEFBQdi3b59W7CWdpxrGXmNUKhV+/vlntGrVCnZ2dkK5n58fgoKCdD47Kysro/Z9dHQ0Ro4cqVWmUCggk8ng5eVl1DqK6tevH3755Red8mdxTGved9HuJNq3b4+bN2/i77//LnEdy5YtQ40aNVCzZk28+uqreh831ejUqRMSEhJw8eLFsgXOKgRTzyt9uO5+eetuY5W17m3WrBnOnDmjU27KNZXrbq67y1N51L0A8OGHH2LWrFlwc3MzOQauu58vxhzbppwvBw4cQGZmps51tX379sjLy9P7PbSoI0eOICIiAr6+vmjevDkWLlyod75t27ahY8eOCA8PR1hYGJo2bYotW7YI01euXImqVatCJBKhXr16iI2NBQAcPXoUoaGhkEgkaNGiBYD8rkF69uyJ0NBQNGrUCE2aNMGMGTNKvB5v374deXl5Wu/3rbfewltvvVXi+5w/fz5CQkKE1z/99BNiYmLwwQcfAABWrFhR4jqKKk393bFjR3Tt2hWrV6/GpUuXjN6Gvu4xXn/9dfz8889Gb7uwkydPAoDWPgGA0NBQAPmfd+F5PTw8hPq28LwKhaLELqyWLl2KMWPGaJWJRCL4+fkZ/Xvo559/RlBQEPz9/dGiRYsyd9tlyn5t1qyZTh/U33zzjU6dfvXqVaHroKioKGzatAmRkZHw8/ND165dkZqaihs3bqBnz56oVasWwsPDcerUKWGd69evF7oP+uyzzzBt2jQ0bdoUvr6+GDt2LFQqFfbv34/27dujatWq6NatGx48eKAVe0nnKZDf9UdKSgrEYu20qb7vU6ZcY8Risc46Ddm0aRMCAgK0yjTfMcpSf5f3NdbYdRpSo0YNvPLKK1plarUaP/74I9577z2j1mHsNRrIv74oFAps3brV9GBLndJnRnv06BGJRCIaPXq0Vvn06dOpf//+FBUVRfXr16cGDRrQhx9+SPfv3zdqvW3btqXAwEC6ffs2EeU/KhUSEqJzN3fjxo3UunVrys7OJqL8R4J79epFvXv31lpfcHAwvfLKK1plKpWKqlevLtxNnT17NgUHBwuPbmRkZFCrVq1KbAly8OBBo1rZlXQnjCj/Tram24clS5YQANq3b5/eefXd2Xv48CF17dqVANA333yjswwM3EEnyt93EomE6tevb1Tcffr0IQD0+uuv05EjR3TuYhb18OFD4dEvU509e1bnbjhR/j545513qEWLFhQUFESNGjWiyZMnU3p6eonr1HxuRddJRNSwYUOqUqVKscsrlUqqW7cuRURECF3PHD9+nAIDA8vUms2U/Wqohae+1kea1hA9e/akrKwsIsp/FNLW1pY+++wzunLlChHlP4Ksb51Dhw4lFxcXmjhxIhERyeVyatGiBYWHh9PkyZOFdX700Ufk4uKi9RkYe57qo+8ac+3aNQKgc90hyn8kUSwW63080tQ7xw8fPqTo6GiqWbMm3bp1S2taXl5eiS0uitO9e3fy9vbWijMxMZHq1atHgwcPpkaNGlGtWrXo9ddfp99++82odbZo0YJcXFx0yn/55RcCQD/++GOxy69evZoACC15FAoFRUdHk5OTk97rxs2bN3W6VWAVj7HHVWnPq8K47n556+7Dhw9TixYtqHfv3hQSEkK1a9em/v3763TDVta615DRo0eTra0tJScnFzsf191cdxtbd0dGRtLo0aOpSZMmVK9ePWrWrBnNmzdPJ8ay1r1ERJs2baLw8HBSqVSUmJhoUkt0rrufX8XVL6acL1OmTCEAOk/yPn78mADQoEGDio3j2rVrZGtrS++++65w7Vq8eDF5e3vrtHLs1KkTLVmyRHh94cIFqlSpkla3hadOnSIA9MMPP2gt+9tvv1GnTp2E17Vr16Zp06YJr48dO0a2trYlXocHDhxoVAt5fS26C5PL5dSgQQNSKBRElN8Fgp+fn8FuwfTVxceOHSM3NzdycHAQurTSKK4lOlF+9xgAaMGCBSXGnZycTI6OjuTg4EAzZ87UubbpUzQefebPn6+3JXZGRgYBoEqVKgllwcHB5ObmprOOxYsXEwAaN25cidsrSqlUUqVKlfQ+tVtUfHw8iUQi+vzzz4kovxX7hAkTyNPTs9Qt0U3dr/pa/hqq0yMjI8nb25u+/vprIsrfpzVq1KBu3brRxIkTSalUklqtpj59+lDNmjV1jjsAVK1aNfrrr7+IiOjcuXMkFotp9OjRtHjxYiLK7/6kevXqOselMeepIQsXLiQAWl0FlvYaU1JL9KJOnTpF1atXp3feeUdn2pMnTygnJ8fodRGV3zW2sNK0RNdn//795OrqKnzHKo4p12gNf39/6t+/v8lxcUt0M/juu+/g6emJyZMna5U7ODgIA3T8+++/2LVrF06ePImIiAjcvXu32HX+/vvv+P333zFhwgT4+/sDAOrUqYM33nhDZ95OnTphy5YtcHR0BAA4OjpixIgR2LZtm9ZgGMOGDcPx48dx5coVoSwuLg716tUT7rYdO3YMfn5+cHZ2BgC4uLhgzpw5aN68ebHxagYe8Pb2Lna+ksjlcvz111/o2rUrgPyWNc7Ozvjpp5+KXU4zKEHlypXh5eWFkydPYtKkScIddWM5OjrCw8MDiYmJRs0fGxuLTp06Yffu3YiMjETlypURHR2NuLg4nZZYiYmJqFKlCl5//XWTYiq8rTp16ui0NHJ2doa9vT127tyJS5cuYeXKldi6dStatGhR4gBjmuPDxcVFZ5qLi4vewVQKW7NmDa5evYqZM2cKrYaaN29ucFA5Y5myX0vjrbfegpOTEwDgzTffhFwuR1paGurWrQsg/667o6Mj4uLidJbNysoSBtSysbFB7969cfbsWURERAjrHDBgADIzM3H69GlhOWPPU330XWNK+uzUajXS0tKM3idF3b9/H3Xr1oW3tzeuXbuGnTt3olq1alrzvPfee/Dz88Nff/1l8vr/++8/7N+/H3PmzIGtra1QLpFIoFar8fbbb+P06dO4cOECwsLC0LFjR6MGZ3z48KHBfaKZbggR4bPPPkPjxo2FljzW1taYNWuWwQHxNNc8fYMGsorD2OOqrOcV190vd91tbW0NhUKBqVOnIiEhAWfOnIGTkxNeeeUVHDhwQJivrHWvPk+ePMGGDRvw8ccfw9fXt9h5ue7mutvYutvNzQ0+Pj6Ii4vDpUuX8OWXX+Lrr79G586doVKptN5XaeteIH8A8okTJ2LJkiVGt97T4Lr7xWXK+WJoXmOPwc8//xxEhHnz5gnH4Icffqh3299++y3ef/994XWDBg3QoUMHfP/990JZkyZNUL9+faxcuVJr2RUrVmD48OEAgEePHuH69evCNQwAXnnlFcyePVvvdgu7f/9+metuANi5cyd69eoFa2trAEBMTAzu37+P/fv3G1xm165dwsDRTk5OaNGiBfz9/bF9+3adwXxLommBa0z97evri61bt8LV1RXTp09HQEAAGjVqhBkzZuhtRT1nzhxUqVIFGzduLHa9zZo1AwCdJ7z++ecfANB68qhZs2ZIT0/XuXbom9dYmzZtglQqNWrA42nTpsHHx0eoV0QiEWbOnAm5XG7ydjVM3a+mysvLw4cffggg/3zs0qUL9uzZg379+sHKygoikQj9+/fHzZs39R4HISEhwpMbmsE8161bJ7RednV1xWuvvaZT9xtznuqjVCrx448/4q233kJ4eLhQXtZrTEm+//57+Pj4oEWLFujTpw+WLFmiNT07Oxs1atTQ6a2gLJ71d5KS/PDDDxgyZIjwHas4plyjNby9vUtVz3MS/Rk7ffo0vvrqK2zatEnnR8vEiROxceNGVK1aFQBQvXp1rFixAsnJySVeJDVfbJs0aaJV3rBhQ515XVxcsHPnTkRGRqJBgwYICwsTfoDeuHFDmG/w4MGwsrLCqlWrhLLCFTmQ/xhmXFwcOnXqhM2bNyMzMxOvvvoqOnfuXGy8msdnCj8GUhrbt29Hv379hBPD2dkZgwcPxq5du4q9MCUkJCAhIQE3btxAjx490LlzZ0ydOrXUj5yIRCKj5vPx8cGBAwdw/vx5TJ48GX5+fli9ejU6dOiAdu3aaVWk9vb28PDwMPnLBZD/ZWXHjh345Zdf4ODgoDXt22+/xZIlS+Dp6Qkg/3GyRYsW4dKlS0aPFK4PEZW4H0w5Tk1hyn4tjXr16gl/V6pUSadMM/J8cnKyzrIeHh7Cvja0vIeHBwBoLW/seVpUcdcYQzTJCmOPY338/Pxw9epVZGdno2vXroiIiMCGDRu05vH19YWrq6uQuDOWTCbD4MGDER0djbfffltrmr+/P65evYrIyEhIJBLY2dlh1qxZiIiIwIQJE0r9JdGYfXL37l3cunVL53j29/c3+Gi5vb09ACAjI6NUcTHzKI/jyphjiOvul7vubtmyJU6fPo3w8HCIRCK4uLhg2bJl8Pb2xtixY42KzZi6V98yI0aMQNOmTTF9+vQS5+e6m+tuY+vuHTt2YMqUKXBxcYFIJEJkZCSmT5+O+Ph4o7pOMPY9zZ07F61atULLli1LXGdRXHe/nEw9X4z5TVOzZk3h2qBZpkGDBjrzOjo6YuzYsYiIiEBISAjCwsJw8OBBnWvCsGHDcOLECVy+fBkAkJ6ejj/++AM9evQAkH/NCQsLw8iRI/HRRx/hxIkTUKvVGD9+vFYc+jx48KDMdTcArF69WquB1oABA+Dh4VHsTfDu3bsjISEB//77L44dO4aaNWti3Lhx6NixY6njMPZzfO2113Dr1i1s27YNgwcPxv379zFz5kzUrl0b33zzjda83t7ecHJyKnFftm7dGl26dEFsbCz++OMPAPnXlY8//hiOjo7C9QIAJk+eDFdXV7z33nt4/PgxiAi7d+8WunEpPK8xEhMTMW7cOPz44496j7XCVCoVTpw4gUaNGkEikQjlDg4OqFmzpknbLcqU/WqqGjVqCDdpAOPrX43C82mWL7pODw8PnWWNPU+LmjRpEuzt7U3Oo5Sl7gaAUaNG4cGDB7h8+TJOnTqF8PBwobELkH9z2NvbW6croWelPL6TFOf+/fvYs2cPRo0aZdT8plyjNezt7UtVz3MS/Rn6999/0atXL6xbtw5t27Y1apn69evD2dm5xNYfmhPG3d1dq9zV1VVn3unTp+PDDz/EtGnT8O+//yIhIUFoWVc4MeDj44PXXnsNa9asgUqlwpMnT/Dnn3+ie/fuwjwfffQRtmzZAplMhgEDBsDLywtvvfUWUlJSio1X84O3rC2NVq1ahTVr1git08LCwnDo0CEolUqsXbu2xOUdHR3x/fffY9u2bZgwYYLJ28/Ozsbjx49N7g+1YcOGmDNnDv755x9cv34dffv2xeHDhzF//nxhHl9fX9y/f1+nRUJJDh8+jFGjRmH//v0lVq4amv6mSjrOND8o9f2wzcrK0vrBqY8px2lpGLNfS6Pw3U5NxVD0DqhYLNZqZaVvWUPLaxJJhZc39jwtrLhrTEmfnVgs1vlcSsPBwQFTpkzBq6++ipEjR2o93TBr1iykpaXp9CFYHIVCgf79+6NmzZoltgQo7JVXXkFGRkaJ/Zd6enoa3Cea6YYYOp4Bw8e05ppnass5VjEUPa7Kel5x3c11d1E2NjaIiIjA1atXhdY8Za17CyMixMTEID09HT///LNRNyC47ua629S6uzB93zHLUvcmJibiu+++K/XxwXX3i8uU88XQvJrXxvymMeYYysnJQZs2bfD3339j3759OH/+PBISEtC9e3eda8Jbb70FKysrof7YuHEjevXqJTyBqelDeuzYsfjll1/wyiuvICAgAIsWLSqxXraysipz3X3nzh0cP34cXbt2Feru5s2bQywWY8+ePTp9TOsTEhKCMWPGYPjw4Th+/LjJMdy6dQsATKq/ra2t0atXL6xZs0ZIxPn5+WHChAm4du2aMN8777yDrKwsrXFfDNm2bRs++ugjjBkzBkFBQRg8eDA+++wzBAcHaz3NU7t2bZw8eRJeXl5o3rw5QkNDsW3bNqxbtw4AdJ78Kc69e/fQqVMnfPHFF0b1Zf/o0SMolUqTrnWmMHa/mqq09W9xy+ur+wuPw2PKeVrYl19+iUOHDuHgwYM6N5rLeo0xVq1atbBhwwZcuXIFU6ZMEcptbW1x5coV/P777+WyHcB830n0+emnn9CyZUsEBwcbNb+x1+jCiKhU9Tx/M3hG/vnnH3Tt2hUrVqxAt27d9M5j6MerRCIRBnAwRNPiqejjE+np6Trzrly5Eh06dNAZ5ECfYcOGITk5GQcOHMCGDRvQp08f2NjYaM3zxhtv4MiRI7h16xamTJmCX375Re+j6IVpWtmUZVCqpKQkODg44OLFi0LrtISEBFy5cgXBwcElPhZeOJZ33nkHP/30k8mPIO3fvx8qlcroLlfWr1+v85nUqlUL69evh6OjI86ePWvS9os6ePAgoqOjsXfvXp0WNkB+RaOvlZ/m7nRJx1loaChEIhH+++8/rXIiQlJSkjCgiiGmHKemMGW/at5r0S+Shh7htRRTzlOg5GtMzZo14ezsrPPZAfldpdSrV0+rmxRjSaVSvV/Kw8LCkJ2drdWlhKnkcjl69+4NHx8frFq1Sm+llpGRgdzcXJ1yY4/psLAwZGZm6gxspNlPxR3Tho5nwPAxnZOTAwAltnJhlmXscVXW84rr7pe77k5LS4NCodApL3qclbXu1VCr1Rg5ciRu376NPXv2GN0Cjutu473MdbdCodBbH+qrj8tS98bFxcHR0VErkdelSxcA+Y+3h4WFoW/fvgaX57r7xWXK+RIWFiaUF50PKP4YBPKPI2OOoWPHjuHatWsYN24cfHx8il2nj48PunTpgrVr1yIvL0/nKTIgPwH0xRdf4NatWzhy5IgweHFJg3v6+vqWeTDolStX4qefftKquxMSErB3717k5eVhzZo1Rq3n3Xffhbe3N6ZNm2ZyDLt374ZIJBK6gyvO/fv3sX37dq0yiUSCrl27Ys6cOVCr1SUOqG6Ira0tpk2bhn/++QeXL1/G4cOH0a1bNyQmJqJVq1Za89atWxfr16/H9evXcf78eaxcuRJKpRIAdOY15NatW2jTpg2mTp2KESNGGLWMp6cnrK2tTbrWGcPU/SqRSCp83W3KearxxRdf4JdffsHhw4eFlvGFlfUao49KpdL7+6RKlSrw9PTU6l7uWXhW30lKolar8b///c/oAUUB46/RheXk5JSqnuck+jNw6tQp9OjRA2vWrNF6bKlx48Za81WuXFnrEQwg/2BMT0/XmbcozeOMRU+cCxcu6Mwrl8t1klH6HoUBgG7dusHLywsrV67EypUrdSryyZMnC31R+fv7Y/r06Xj33Xdx7ty5YuPV3HU1tF1jrFy50uAP4B49euDSpUs4ceKEUesaN24cgPy+0IyVmZmJTz/9FD4+Phg/frxRy0ydOlXvXXfND4yiIyo/fvxY7w9sfXbv3o0RI0Zg3759Qt9XycnJWq0P79y5g4CAAJ27tn///TcA3WOy6PZ9fHzQunVrHDp0SGu+U6dOISsrC/369Ss2RlOOU1OYsl81FWPhi2pqaqpJo8ObgynnqTHXGIlEgt69e+Ovv/7SuqOenJyMy5cvl/jZGRIcHKz3PNO0FCl8l12lUhnVSgXI/4HfrVs31KxZEz/88IOwL2bOnKk1kv2YMWP0Pjb4999/w97eHvXr19fafmpqqtZ8mvdd9Jg+dOgQatSoUey1t2rVqggICNA5nu/cuWPwUTDNZ1i4P0tW8Rh7XJX1vOK6W9vLVnf37t1bp4sLlUqFhIQEVKtWTei/1tS6V9/2VSoVoqOj8fjxY2zfvl34kbN8+XIsX7682Di57jbey1x3Hzt2TO+4Cvq+Y5pS9xatu999913cunVLK4m3b98+APmPtyckJBTbdQzX3S8uU86X1157Dc7OznqPQYlEgj59+hS7rZYtW+K///7TuiYRkc4TkJo4jL0uDBs2DCkpKViwYAHy8vK0+jNOTU3FmDFjAOS3rm3dujV27twJNzc3o+rvstTdRIRNmzbp7YKlcePG8PPzM/omuJ2dHT788EMcOnQIx44dMzqGAwcOYP/+/Xj77bcRFBRU4vzXrl3D+++/r9XiWMNQ/W3sPjpw4IDOTYm//voLaWlpWt3dPH78GEeOHNFZfufOnWjUqJHONVPf9m/cuIG2bdvi888/x9ChQ4Xy7t27FxuvRCJB8+bN8c8//2jdxJRKpXqToMYydb/6+PjoJDM1XRZVFKaep1OnTsWBAwcQFxcntHbes2cPZs6cKcxT1muMPkePHhWS84VlZWXhyZMnOq3bMzIyynzzrLBn9Z1Esw5D9u/fLzSuM5ax1+iiMZSqnjd5KFJWrKNHj5KzszONHj2aNm7cqPWv6O4GQEOGDCGpVEpE+SMHd+jQgZydneny5cslbqtt27YUGBhIt2/fJiKiq1evUs2aNXVGPo6OjiY7Ozs6ffo0ERGlpaVRRESEwZGwx44dSxKJhCIiInSmRUZGUkxMDCmVSiIiysrKoubNm1OvXr2KjVWpVJKnpyctXLiw2PkMjQ6sUqmoevXqlJqaqne5EydOEACdUYqLG+144MCBZG1trTPCNIqMKq5SqSguLo4aNGhAgYGB9M8//xgdd0BAAIWGhtL169eFsuzsbBo9ejRZW1vT8ePHhfL//vuPbG1tqXPnznrjLWzr1q1ka2tLM2fO1DrGlixZojX6cGJiIgGgyZMnC6NZ37t3j8LCwqhKlSpa+9PQ9s+cOUN2dnYUGxtLREQ5OTkUGRlJzZs3Nzgyu4ZCoaC6detSREQEPXnyhIiIjh8/Tl5eXnr3l5+fH/Xo0aPE92/Kfs3Ly6OAgAB68803Sa1Wk1qtpo8++ohcXFx0RunWjBBfOC7NPiw6unRAQIDO8vpGIzd2ncaep6ZcY5KSksjDw4MmTpxIarWalEolDRgwgGrWrEkZGRl6921Jo2kHBARQu3bttI6dzZs3k1gspj59+mjNO2LECBKLxcKI6YZkZmZS69atKSwsTOc9tW7dWiuWoUOHUtWqVenq1atC2bJlywgAzZ4926jt9+3bl4KCgujhw4dERLR7926SSCRGjca+evVqAkBr164lovxjfODAgWRnZ6dzPBARbdmyhQAI12lWMZlyXJXmvCqM6+4CL1vdHRkZSaGhoXTv3j0hxkmTJhEAWr9+vda8xta9+ravVCqpX79+VK1aNVq7dq3WNbVPnz40ffr0YuPkupvrbmPqbs02ly1bJpRdvnyZqlWrRg0bNiSZTKY1v7F1rzHb13wWJR3LGlx3P78MXac1TDlfli5dSvb29nTmzBkiyr9++vj40IQJE0qM4+rVq2Rra0vvvvsuqVQqIiJavHgxOTo6al0/Hj9+TB4eHhQVFUVZWVlERHTo0CGSSCQ61xmi/GPR29ubJBIJLVmyRGtaYmIiWVtbU3x8vFB28uRJkkgktHPnzmLj3b59OwGgx48fFztfQEAARUZG6pT/9ttv9PrrrxtcbtSoUQSA/vzzT63yonWxRlpaGjk5OVGnTp20yjXX2sLXy/T0dPr666/Jzs6O+vfvT3K53Ki4Ndek8ePHC/kVovzPLigoiBo1aiR8DyIimjNnDgGgTZs2GXyfGjVr1qSZM2eSWq0mIqKbN29ScHAwzZw5U2u+o0ePkpOTE/37779C2fr168nT05MSEhK05tW3/UuXLpGfnx8NGDBAp67w9PQ0eB5oxMfHk0gkos8//5yIiNRqNY0bN44cHR119tfBgwcJAG3fvr3YdZq6X3/77TcCQPv27SOi/NzDK6+8ovf7a2RkpE5cmnNeXwxFl9dXDxizTlPO048++ojc3d3pf//7n9bnMWrUKJ1jvTTXmOK+82re96JFi4TrTlZWFr355pskFotpx44dwrxZWVlUqVIlqlevnsFt6VOe19iicRv6TrJhwwYCQPPmzdM7/fXXX6cpU6aY9D6MvUZrpKaman0vMAUn0ctZo0aNCIDBf4Vt2LCBevToQcHBwVS/fn2qWrUq9evXjy5dumTUth4/fkxvvfUWubu7U8OGDen1118XviTWrFmTxo4dS0REGRkZ9O6775Kfnx+Fh4dTp06daMaMGcJ8X3zxhdZ6z58/TwBo6dKlOtvcuXMndenShYKDgyk0NJSCg4Ppgw8+oPT09BLjHTVqFLVu3VrvtCdPnlBoaCj5+PgQAAoKCqJPPvlEiCc4OJisra0pNDSULl68qLXsgQMHKCQkhACQra0thYaG0pkzZyg0NJTc3d0JAIWGhtLbb7+ttVxCQgIBIH9/f4qKiqKFCxdSaGgoASB3d3cKDQ2lhg0bUo0aNSgqKooWLVokXGQ1pFKpTtyFL5I7duyg4cOHU4MGDahhw4YUHBxMAQEB1KNHDzp27JjWupKTk6ly5coUHR1d4r7UvC99/wpfJORyOf3444/UsWNHCg4OpqCgIKpWrRoNHz6c7t69q3f7w4cP19neX3/9Ra1ataLg4GCqVasWvfvuu8IP65LcunWLXn/9dXJ3d6ewsDAaOHAgff3118L+mj9/PhHlX/itrKzos88+K3GdpuxXIqJjx45Ro0aNqHr16tSmTRuKi4ujgIAA4XOWSqX0/vvvk7+/vxDXunXraN26dRQUFCQcJ2PHjqUrV65QaGgoWVtbk7u7u5Cwatq0Kbm7uwvH6ZUrV2js2LElrnPkyJFEZPx5aso1hojo4sWL1LlzZ6pbty7Vrl2b+vXrR3fu3NGZb+/evRQaGiok8/z9/Sk0NJS+++47rfn2799PAwcOpODgYAoJCRGSInPnztX5kjtt2jRyd3enc+fOFft5Ll68uNj3VLgCPn/+PI0ZM4YaNmxIISEh5O/vT82aNaM1a9borHfatGlUqVIlunDhglZ5bm4uffLJJ1SnTh1q2LAhhYeHl/hjpLBly5ZRYGAgVa9enZo2bUpbtmzROp4yMzOFeQcOHEgdO3Y0et3MMkw5roiMP6/04bo738tYd//111/0zjvvUP369alhw4ZUpUoVioqKor179xqcv6S6V1/dvXPnzmKvqcYkHrnu5rq7pLo7MzOTFi1aRK+++irVr1+f6tatSzVq1KAxY8bo/Y5obN1rqO4mKrjmaD4LHx8fCg0NpdWrVxcbKxHX3c+bmTNn6lynQ0NDhRtWhZlSJ//000/CNahevXo0b948IeFSkvj4eIqIiCBvb28KDw+nadOm0ZAhQ4Trx++//05E+TeIW7VqRb6+vtS6dWt65513qEuXLsJ858+f11rvuHHjyNbWVifhLZVKacaMGRQeHk6hoaEUGhpKERERBr+bFCaTycjNzY1WrFihd/rq1auFa6KjoyOFhoYKN66++OIL8vX1JR8fH52bbERE77//PlWtWpUAUOXKlenDDz/UWxcXPb/Hjh1LACgkJIQWLlxIUVFRwrW2Zs2aFBoaSvXr16datWrRgAED6ODBgzrb3rRpk07cf/zxBxHlJ+oXLlxIr732mnC81KpVi+rVq0fjx4+ntLQ0rXX9+OOP5OTkRAcOHChxf06ePJmCgoKoZs2a1KhRI2rVqhVt3rxZZ76kpCTq0aMH+fv7U4MGDSgkJIQGDRqkdfO48PadnZ213mevXr2KrStKSqITEf38888UFBREVapUoYiICPr2228pMjJS2F9XrlwhIqLvv/+eRCIR3bx5s9j1mbpfiYhmzZpF1apVE97/zz//LHzOEyZMoEePHlFoaCg5OjoKcWVmZlK/fv2Ec15zTs2fP1+o4zQ3Mw4cOCAcbz4+PtSvXz/KzMw0ap2a71zGnKfnzp0r9vPQd8PI2GvMyJEjdb7zFm5oQVRQz7Zu3ZqCgoKEnGHnzp0pLi5Oa30ymYzq1q1Lbdq0KfEYIXo211hTvpM4OzvrvT7dvXuXbGxsKCkpyaj3UZix12giouXLl5O7uztlZ2ebvB0RURlHnGAvHIVCgcqVK+PGjRvlOlDAvXv30KBBA2zevLlMo3OzF9M333yDWbNm4d9//zXbqNKMPUsXL15E06ZNcfz48VIP0MaYsbjuZpbAdTd70XDdzcxt/fr12LVrFzZv3lyu6122bBm+/vprXLx4EXZ2duW6bvZ8y8vLQ7NmzVCzZk1s2bLF0uEwZla5ubkIDg7G5MmTjR5zoDDuE53p2LdvHzp06FDuI+1WqVIFu3fvxnvvvYczZ86U67rZ8+3WrVtYuHAhdu7cyT/C2QshMTERvXv3xrp16/hHODMLrruZuXHdzV40XHczS9i6dSuGDRtW7ut9//330bdvX3Tr1k2rP2PGFixYgEqVKhndrz1jLwq5XI5u3bqhf//+pUqgAwC3RGcAgPnz56NKlSoYOHAg2rRpgy+++MLo0aNNde/ePdy8eROtW7d+JutnzyeZTMatJNgL4+zZs3BwcEC9evUsHQp7gXHdzSyN6272IuG6u/wlJiZi/PjxcHBwwLp164TypKQktG/fHlWrVgUAPHz4EG+88QZmzJhhoUjNq0WLFvjtt99w79499OrVCxcuXNAZ5LC8/Prrr2jSpAkqVar0TNbPnj8KhQJWVlbP7JhjrKJKS0vD6dOn0alTp1Kvg5PoDADw3XffYfr06fD29kavXr3w+eefWzokxhhjjBWD627GGGMV2ebNm5Geno6jR49qJdEfP36Mc+fOoW3btgCAUaNGYeLEiahRo4alQjWrqKgoJCYmwsPDA0uXLkWLFi0sHRJjjDEjcBKdMcYYY4wxxhh7ySgUCkyfPh0LFizAjRs3EBgYqDV9+/btmD17Nuzt7SEWi7Fs2TLUr1/fpG2sWrUKcXFxWkn0wp48eYL33nsPmzZtKu3bYIwxxszCytIBMMYYY4wxxhhjzHySkpIwYMAA1KlTByqVSmf6qVOnMGTIEJw5cwZ169bFmjVr0KlTJ1y+fBnOzs4AgGbNmuntb3vfvn3w8/MzKo4VK1bg7bffLtubYYwxxsyAW6IzxhhjjDHGGGMvkX///Rd2dna4e/cu2rRpg8TERK2W6H369IGVlRU2b94MAFCr1fDz88Onn36KDz74wOjtFNcSXa1W4/XXX8eePXsgEonK/J4YY4yxZ4lbopcjtVqN+/fvw9nZmb8EMMYY00JEyMrKgp+fHw/kU4Fw3c0YY8yQF7nubtCgAQDg7t27eqcfOnQIn376qfBaLBYjIiICcXFxJiXRi7N371506dKlxPpXLpdrtXhXq9VIS0uDh4cH192MMca0PMu6m5Po5ej+/fvw9/e3dBiMMcYqsDt37qBq1aqWDoM9xXU3Y4yxkrxsdffjx4+RkZEBX19frXJfX1+cPn3a6PXs3bsXu3fvxs2bN7F06VKd5PuaNWuwcuXKEtczd+5czJw50+jtMsYYY8+i7uYkejnS9A1369YtuLm5WTYYxixMrVbj4cOH8PLyeuFa7jBWGunp6QgICBDqClYxcN3NWAGuuxnT9rLW3VKpFABga2urVW5raytMM0bXrl3RtWtXg9O3bt1q1HomT56McePGCa8zMjJQrVo1JCYmct3NXnpqtRqPHj2Cp6cn192MIb/url69+jOpuzmJXo40j5K5uLjAxcXFwtEwZllqtRoymQwuLi5cmTOG/HMCAD92XMFw3c1YAa67GdP2stbdDg4OAKAzaKhcLhemmZOtra1OQh8A3NzcOInOXnpqtRoKhQJubm5cdzNWyLOou/kMY4wxxthLJzY2FsHBwWjSpImlQ2GMMcYqFA8PD7i6uiIlJUWrPCUlBTVq1LBQVFx3M8YYsyxOojPGGGPspRMTE4NLly6Z1LcrY4wx9rJo27Ytzpw5I7wmIpw9exbt27e3WExcdzPGGLMkTqIzxhhjjDHGGGNMMGnSJOzbtw/Xrl0DAKxfvx4SiQRDhw61cGSMMcaYZXCf6Iwxi1KpVFAqlZYOg7Eys7a2hkQisXQYjDHGGGMlUigU6NixI9LT0wEAb775Jvz9/YXBPps2bYrVq1dj4MCBsLe3h1gsxq+//vrSDbLKGGOMaXASnTFmEUSElJQU4Ys7Yy8CNzc3+Pr6vnQDkDHGGGPs+WJjY4P4+Phi5+nVqxd69eplnoCMEBsbi9jYWKhUKkuHwhhj7CXESXTGmEVoEuje3t5wcHDgpCN7rhERpFIpUlNTAQCVK1e2cESMMcYYYy+WmJgYxMTEIDMzE66urpYOhzHG2EuGk+iMMbNTqVRCAt3Dw8PS4TBWLuzt7QEAqamp8Pb25q5dGGOMMcYYY4yxFwQPLMoYMztNH+gODg4WjoSx8qU5prmff8YYY4wxxhhj7MXBSXTGmMVwFy7sRcPH9PMjNjYWwcHBaNKkiaVDYYwxxpgRuO5mjDFmSZxEZ4wxxthLJyYmBpcuXcLp06ctHQpjjDHGjMB1N2OMMUviJDpjjBkpMDAQUVFRiIqKQvPmzSESiRAWFiaUubm5ISkpSZj/999/h0gkwp9//qmzrvfffx+BgYGws7MTlg8JCUHTpk0RHx8vzLdr1y6tbUVGRqJp06Zo164d1q9fr7XOovN+9913wrRffvkFLVq0QGRkJCIjI9G4cWN8+OGHSE5O1vteb9++jaioKNjZ2SEwMBAjR44Upi1fvhxhYWEQiURo3rw5tm/frjO/5j1p/tnZ2ZVyrzPGGGOMMcYYY4xZFg8syhhjJtAkuJOSklC9enUsWrQIUVFRACD8r7FhwwZIJBKsX78erVq10pq2bNkyzJgxA6tWrdJKmk+aNAk9evTAjRs34OXlhe7duyMkJERnWwkJCRg4cCD27NmDDRs2QCQSGZw3Pj4eQ4cOxYkTJ9CgQQMAwIULF9CyZUv0798flStX1nmf1apVQ3x8PAIDAxEdHY0ZM2YI00aMGIE6deqgTZs22LRpEwIDA4Xt6JsfgDAPY4wxxhhjjDHG2POGW6I/C7m5lo6AMfYMjB07ttjp0dHRcHNzAwAoFAqcPHkSgwYNwtatW40eaHLgwIHIzMzEiRMnip0vLCwM+/btw44dO7RanOuza9cuBAcHCwl0AGjYsCEGDx4MW1tbo+IqqxUrVphlO4wxxvL9/jswfz6QmmrpSBhjrHxwn+jshSaVAuvWAXqeYmaMVQycRH8W8vIsHQFj7BkwJYm+b98+dOrUCW+99RYeP36MgwcPGrWNvKfXD7G45MtzYGAgevbsidjY2GLns7GxwdWrV3Hnzh2t8tjY2Gf+IyQ+Ph7R0dFo27btM90OY4yxAhkZwMSJwJYtwMyZlo6GMcbKB/eJzl5YajXwwQfAokXA+PF8B5yxCoqT6Iwx9gxs2LABAwcORNu2beHj44MNGzaUuExeXh6+/fZb1K5d2+ikc5MmTXDp0iXk5OQYnGfw4MFQKpVo0KABPvzwQ/z5559Qq9VGvxfGGGPPl3v3Cv4+edJycTDGGGPMCOfP5/8DAJUKuHvXsvEwxvTiPtEZYxXH4MHA48fm366HB7B2bbmtLisrC9evX0d4eDgAoF+/flixYgWkUikcHBy05k1JSUFUVBQUCgXOnTuH/v3749SpU7C3tzdqWy4uLgCAjIwMODo66p2nfv36OHnyJGbNmoUffvgBS5cuRUBAAKZOnYp33323xG0U7bcdANLT042aPz09HWFhYca8FcYYY+UkN/kJcD8XsLMFKnlYOhzGGGOMFef+fVyTVYOVSAVbkQJW91XwCbd0UIyxol7KJHpiYiLGjx8PBwcHrFu3TmvaggULcPv2bTg4OEAqlWLJkiUQiUQWipSxl8zjxy/Eo2vbt29Hz549hdcDBw7Et99+i507d2LAgAFa8/r6+goJ5w0bNmDo0KF4//330bhxY6O2lZGRAQBCNzKGNGzYEFu3bkVGRgZ27dqFb7/9FiNGjICVlRWGDRtW7LL6BgqNj49HmzZtSpw/Pj4eq1atMuatMMYYKyfp6/YCGeFABlAvWALAzdIhMcYYY8yQJ08w9s54pOa5AwBar3LCwm4WjokxpuOlTKKfOnUKnTp1wtGjR7XK09LSMG/ePDx8+BBisRhhYWE4e/YsIiIiLBQpYy8ZDwu1livn7W7YsAFPnjzB4cOHhTJ7e3usX79eJ4le2MCBA7F8+XLMmjULu3btMmpbp0+fRoMGDXRauBeWnp4OOzs72NnZwdXVFYMHD8agQYMQHh6OnTt3lphEL4uoqChERUU9s/UzxhjTlf7HeQBPn4byPw7gNYvGwxhj5SE2NhaxsbFQqVSWDoWx8pWWhix1sPBSJuWuNxmriCpkEl2hUGD69OlYsGABbty4gcDAQK3p27dvx+zZs2Fvbw+xWIxly5ahfv36Rq+/f//+eltGapJM2dnZcHR0hJWVFQICAsr4bhhjRivHLlUsJTU1FVKpFCeLdEI7bdo0fPnll3j8+DE8iknajx8/Hj169MDVq1dRt27dYreVlJSEnTt3YtGiRcXOt2jRItSrVw9vvvmmUCYWi1GzZk2ju40pq7179yIyMhJOTk5m2R5jJeEf4uxFliFyFf52lSZbMBLGGCs/MTExiImJQWZmJlxdXUtegLHnhPJRBnLVtsJrWS5ZMBrGmCEVbmDRpKQkREZG4v79+3p/2J46dQpDhgzB+vXrcfToUbz99tvo1KkTsrKyhHmaNWuGsLAwnX/3798vdtsODg748ssvMXToUAwdOhRt2rQpsYsExhgrbPPmzejfv79O+aBBg6BUKrF169Zil+/WrRtq166NhQsXFjtfQkICunTpgj59+mDEiBElxrVkyRI8efJEeH3hwgUcOnQI/fr1K3HZ8rBgwQI8evTILNtizBgxMTG4dOkSTp8+belQGCt3uU5ewt8OmZxEZ4wxxiqyh/cUWq9zcy0UCGOsWBWuJXp2djbWrl2Lu3fvYs2aNTrTv/zyS3Tp0kVoofnWW29h4sSJWL16NT744AMA0GkBaqyEhAQsXrwYJ0+ehFgsRt++fbF69Wq8/fbbpX9DjLEXzoEDB4Q+v8eOHYt33nkHH3zwARYvXow5c+bA398fzZs3F7qCUqlUGDVqFKysrDBjxgwkJyfj4cOH2LdvnzCw6BdffIFWrVpBJBJh7Nix+Oijj3D16lX06tULGzduFLbl5uYGqVQKZ2dnfPrppxg4cKAQ165duzBnzhxh3pEjR+K9995Dr169kJycjA4dOsDZ2Rl5eXlQKpVYtmwZunfvrvc93r59G0OGDEFKSgpWrVqF5ORk/PDDDwCA5cuXY9myZQCAN998E5988gnCw8PRv39/JCcn43//+x8OHDigtb5Lly6V3wfAGGOsWLlWLsLfj+4rIZMBdnYWDIgxxhhjBqUka7c8z5VZIIi8PODYMSAwEKhWzQIBMFbxVbgkeoMGDQAAd+/e1Tv90KFD+PTTT4XXYrEYERERiIuLE5LopXXnzh14enpCLM5voF+5cmXIZJa4ejHGKrLOnTujc+fOOuVjxozBmDFjdMolEokweKgx3nvvPbz33nta6zVG9+7d9SbFQ0NDhQS4sapVq2Yw5hEjRuht/X7ixAmTtsEYY+zZGF71V9y+DRzLCcG0ywPww0XAEkP8nDsHVKoE+Pubf9uMMcbY8yLloUTrda7MAp1GbNgALFkCuLoCu3YBjo7mj4GxCq7CJdGL8/jxY2RkZMDX11er3NfX16THsffu3Yvdu3fj5s2bWLp0qZB879y5M3bu3Ilp06bB3t4eGRkZiI6ONrgeuVwOuVwuvM7MzAQAqNVqqNU8EAR7uanVahCR3nNBM03zj7EXheaY1lcPcL3AGDOXSnkPEepwHcdyQgAiSKXmj+HaNWDCBCA7G9i7Nz+ZzhhjjDFdD9KstV7nykXmD2LJkvz/MzKA48eB9u3NHwNjFdxzlUSXPv0FYGtrq1Vua2srTDNG165d0bVrV51ya2tr/O9//zN6PXPnzsXMmTN1yh89fgxFkRgZe9mo1WpkZGSAiISnOzSUSiXUajXy8vKQl5dnoQgZK395eXlQq9V4/PgxrK21vwxnZGRYKCrG2EtHKoW9+OnTlBZKop8+Dfj4ANbWwNWrwCuvmD8GxhhjrMLLy8NDmbNWkUwhBhEgskAuHQCQlmahDTNWsT1XSXQHBwcA0Gr9rXmtmWZOkydPxrhx44TXmZmZ8Pf3h6eHB9y8vc0eD2MViVqthkgkgpeXl04SXSaTISsrC1ZWVrCyeq4uQ4wVy8rKCmKxGB4eHrAr0gGxjY2NhaJijL10pFI4FE6i5xAA8/4SV2VJceV0HuDoiNxcSckLMMZYCWJjYxEbGwuVSmXpUBgrP3I5slTa+Sy1iqBUAub8+SBXW0MiUsNKpAJu3zbfhhl7jjxX2SsPDw+4uroiJSVFqzwlJQU1atQwezy2trY6reKB/H7aiyYNGXsZiUQiveeDWCyGSCQS/jH2otAc04aOe8YYe+aUSsSlheO3zGZCUW6OGoB5E9kOP68B7rYGXFwglVY167YZYy+mmJgYxMTEIDMzE66urpYOh7HyIZMhW12kUahajdxcMybR1WpsedIB36b2R2XrR5h64iSammnTjD1PnqskOgC0bdsWZ86cEV4TEc6ePYupU6daMCrGGGOMMcYqAKkUyx/1wn/yKkJRnlwFsybR1Wo43LoMoDWQmWmR7mQYY4yx54JMhvlVFyNHZY/zubXhKsmGfVAgnJzmmi+GtDTcU3pBDRHuKb1w85YEYQrztoRn7Hnw3DWLmzRpEvbt24dr164BANavXw+JRIKhQ4daLKbY2FgEBwejSZMmFouBMcYYY4wx5ORAptZ+UjI/iW4+mbfTMTclWnidm2vWzTPGGGPPD5kM1iIV3Kyy0dr5H4Q6XEcd21uQmPMBsocP8VDpLrz8+lp3pKaacfuMPScqXEt0hUKBjh07Ij09HQDw5ptvwt/fH1u3bgUANG3aFKtXr8bAgQNhb28PsViMX3/9Fc7OzsWs9dnix8oYY4wxxliFkJuLXAsn0dMTn2jFYIk+2RljjLHngkymW2buu88PH+KJyqXgNamRmWneEBh7HlS4JLqNjQ3i4+OLnadXr17o1auXeQJijDHGGGPseZGTA6lae2BjpVxt1hCy72cCKJREz8wDYG3WGBhjjLHngr4kurn7QcvKwhNVoYapakJ2tnlDYOx5UOGS6IwxxhhjjLHSUefkQk7aT2gqZeZtiZ6dnIXCSfScdAU4ic4YY4zpIZPhx4c9IRGpkaO2Rz27JCgULmj+GPDwMFMMOTlIy/MteE1qyHL5KTLGinru+kSviLhPdMZeHiqVCnPmzEGTJk0QFRWFli1bonXr1pg+fbqlQzOr+Ph4rFq1qkzrOHLkCJo3bw6RSISkpCSjl7ty5QreffddREZG4tVXX0XTpk3x888/68x36dIlREVF4dVXX0Xjxo2xbds2nXnUajUWLlwIe3t7vU9B7dy5E926dUOHDh3QqlUrREREYMuWLaa8TcYYMytZhlz4202ShZ9rfILoXhlmjSH3oXbzNXl2nlm3zxhjjD0vKFeGHx71xrKHfbH6cVdMvheD6YlD8d9/5otBkSVHjtpeq0yWY94b8Iw9DziJXg5iYmJw6dIlnD592tKhMMaesdmzZ2Pjxo2Ii4tDfHw8/vrrLwwfPhyzZ8+2dGhmVR5J9MjISGzatMnk5b766ivI5XL8/vvvOHr0KObOnYv+/fsjLi5OmCcrKwsdO3bEsGHDcPToUWzYsAFDhw7FqVOnhHmePHmCDh064MqVK5Dpe4wSwHfffYd+/frht99+w59//okZM2ZgwIABuHDhgulvmFUofAOcvahkWUrh7xD7Gwi0TYabvbyYJcpf7qMcrdfybKWBORljzHhcd7MXUV6OnjqaCAqF+WJIf6ybMC/8fYIxlo+T6IwxZoIdO3bgtdde0xpEODo6GuHh4RaM6uUSGBiI8ePHQ/J0yPp27dohKChIq4X4qlWroFKpMGTIEABAnTp18Nprr2H+/PnCPDk5Ofjyyy8xZcoUg9uaPXs2Bg4cKLyOioqCWq3GjRs3yvttMTPjG+DsRZWbWfCj10789Ie50rw/hGUZBTcmO7icxHvd75l1+4yxFxPX3exFpMzRky0ngkJOZovhyWPdsVO4JTpjujiJzhhjJrCxscHRo0chl2u3GNC0cE5JSUFUVBREIpHQPcjixYsRGBiIqKgoYf5u3brBzc0NH3/8MUaNGoVmzZqhSZMmuHnzJrZu3YouXbqgVq1aWLNmjbDMp59+Kqxn/vz5aNOmDWrXro19+/bh3Llz6NevH+rWrYvRo0drxbZ161a0aNECbdq0QdOmTTFu3Did+ItKTk5G37590bhxY7Rq1QpDhw5FWloaAGDhwoVYtWoVEhISEBUVhaioKOQaGEF+2bJlaNasGdq0aYMmTZpg9uzZICrbF8JPP/0UoaGhWmV2dnZQFGquERcXh4iICIhEBf34NWnSRKu1etWqVdG4ceNitxUREQErq/zhQ5RKJRYsWIDg4GB06NChTO+BMcaeldysgq5T7DVJdHM2ZwOQm1NwnY9y+hs13R6bdfuMMcbY80JvEh2AQma+QcGf/szTwk+RMaaLk+iMMWaCESNG4MSJEwgKCsLs2bNx5coVrem+vr46fWuPGTMG0dHRWmV79uxBWFgYtm3bhs8//xwnT55EnTp1MHjwYKjVauzbtw+xsbGIiYlB9tOh0b/44gtER0fjzJkzaN68OQ4fPoyJEydi+PDh+PXXX7FlyxYcP34cK1aswJEjR4Rtbd68GZMmTcLhw4fx119/4fLly/jyyy+LfZ+9e/dGrVq1cObMGRw9ehS2trZCi+xx48YhOjoaYWFhiI+PR3x8POzt7fWuZ9WqVVi+fDkOHz6M+Ph4bNmyBWvXrjVmVxstMzMTFy9exBtvvCGU/ffff/D19dWaz9fXFxkZGcLNAFPExMTAy8sLhw4dwq+//gonJ6cyx80YY8+CWqaAn/Uj2IvlOJIVjm1P2uDYWTuzxlC4hyw7sQLIzjY8M2OMMfYSM5REl0vN1xK8vvNtfFdtHrq4/iWUcUt0xnRxEr0ccN9sjJWf9euBLl1K/jdunO6y48YZt+z69aWPb/jw4di5cycqV66MTz/9FEFBQWjevDmOHj1aqvW1adMGXl5eAICWLVvin3/+QZ8+fQAArVq1QnZ2tk7XIb6+vmjdurWwzIMHD9CiRQsAQKVKlRAUFIR//vlHmP+rr75Ct27dAADW1tbo2bMn9u/fbzCm33//HSdOnMCECRMAACKRCCNGjMCvv/6KmzdvmvT+Nm3aJLQad3R0RJcuXYrddml89dVXaN++Pbp27SqUSaVS2Nraas2neS2VSk3eRmxsLB4/fox27dqhZcuWSE5OLlvQjDH2jNRxS8WuWuOwveYEpKucMSdlGLYdci15wXKUq5VElwM5OYZnZowxxl5iipxCLb4LPUWrkJkvie2ieoImjpfQ3fUPocycSXzGnhdWlg7gRRATE4OYmBhkZmZq9ZPMGDNdTg6QmlryfD4+umVPnhi3bFl/y3fv3h3du3fH7du3sXnzZixevBjt2rXDv//+izp16pi0rsqVKwt/Ozg4wNPTU+g+xNHREQCQkZFR7DJFyxwdHbWWycnJwaBBg3Dr1i3Y2NggJSWl2O5c/v33X4jFYvTt21coy8vLQ0BAAJKTk1GzZk2j319ycjI++ugjPHr0CNbW1khKSkL16tWNXr4kv/32G3bs2IE//vhDq9zBwUHnPWpea/aZqSQSCWbMmIFVq1Zh4cKFWLBgQemCZoyxZ+lpM3BrUUG3LkqF+R4JB4CaNnfR3lmNU9L6uCYLgPqcA14ZYNYQGGOMMSA5GYiLA9q2BapUsXQ0euXlFiTRbazUUCjzE+lyqRnr7qddcza0v4FdNcfBTqyAY4/FAPT86GbsJcZJdMZYheLoCHh7lzyfu7v+MmOWfZqbLpWUlBShm5Bq1arh448/xltvvYWAgADs27fPYBJdpdJ/J18zOKah1wB0+hDXN0/RMs0y2dnZaNu2Lfr374/169dDLBZj1apVmDFjhv43WMihQ4f0bstYt27dQocOHTBr1iyhVfuMGTN0ursprTNnzmD8+PHYu3cv3NzctKbVqFEDKSkpWmUpKSlwdXVFpUqVjN6GQqGAjY2N8FosFqN27dq4dOlSmWJnjLFnRm8S3bwhdHI/hU5V76Lr9UVYnPomPHc64MA888bAGGOM4ZNPkHPhP1j/ehg261ZYOhq9lNKCJLq9tQoKZX6aLk9uxpbgT1uZ2YqV8LN5lF9GsmIWYOzlxEl0xliFMmhQ/r/SWLiwfGPR580338SmTZu0+tuuXLkynJ2dtfrJdnZ2FvoyB4B79+49++D0uHLlClJTU/HGG29ALM7vwUtRwgBzDRs2hFqtxvXr11GvXj2h/L333sMXX3wBDw8PYV0AIJPJIJFIYG1trbWe06dPIzc3F/379xfKStq2sS5duoRhw4Zh+/bt8Pf3BwAsX74cI0aMAAC0a9cOc+fOBREJg4ueOXMG7du3N2k74eHh+Pfff7XKkpOT0bJly3J4F4wx9gw8TaJboeDHd56ybAM6lzYGW3H+NV+u5B4kGWOMmdmjRzh3RokRt76H53/p2CoFSvlA6jOlyC2orx1sVciQ5qfplHLztUS/9dgJKTn1YStSopbtHThJcs0+KDljzwP+RssYYyaaPXs28vIKWvitXbsWKpUKnTp1EsrCwsLw11/5A7M8ePAAhw8fNnucQH6LbHt7e8TFxQHIbxG/c+fOYpdp06YNWrRogS+++AJqdf6Xt61bt+LKlSvw8PAAAHh5eeHJkycA8gcaPXjwoM56goKCIBKJhG3n5uYa1R9627ZtMXXqVIPTExMT0aVLF0yYMAHp6ek4c+YMzpw5gw0bNgjzDBs2DBKJBOvWrQMAXL9+Hfv378fEiRNL3H5hly5dwt69e4XX69atw9WrVzF06FCT1sMYY+Zy+KofJtwdg1nJ7wplZk+iP30s3E7ESXTGGGMWcvIktj5pDxXEeJBXCfFxeSUvYwG2eTloYH8TdWxvI8A9A47iXLhJsmAjMV9L9B23whBz+xO8c+tTXJNXyy8spvtPxl5W3BKdMcZMMG7cOKxZswYtWrQQ+t12c3PDwYMHhRbRALBw4UIMGzYMf/zxB+rXr4++ffvixx9/RLdu3bBnzx68+eabSEhIQFJSElxcXODr64t58+YhJSUFHTt2xKZNm9C7d28AwNixYzFv3jwkJCRg1apVSE9Px5AhQzBp0iQMHz4cQH4L+RUrVgjzJSUlwc7ODpMmTcKGDRvwySef4MCBA/Dz84OPjw8OHTqEdu3a4dChQ3rf57Zt2zBmzBg0aNAAPj4+8PHxwebNm4Xpffr0wcqVK9GqVSu4urrqbeFdv359fPfdd5g1axZWrlwJHx8f1KxZE3FxcRg0aBBGjBiBTz75RIj/q6++QqtWrZCbm1tsn+0TJ07ErVu3EB0drVUeGRkp/O3s7Ixff/0V77//PpYvX47c3FysWrUKTZs21Vqmd+/euH//vrCf3dzctLqxWbx4MWbPno158+ZBpVJBJBJh165daNWqlcH4GGPMkhIfOSM+K1SrzOyNyYq0RFfkSaBWA2LOpTPGGDOXS5cQ6vAIBzJfAQDI03MBOFs2Jj1q2CdjVeAv+S+iogBN15c9tgDwMEsM8kI9t2x/0gYXcmuh8nFndGxrls0z9twQUdHOdpnJYmNjERsbC5VKhWvXruHJ7dtwK5RMY+xlpFarkZqaCm9vb62uP4D87j8SExNRvXp12NnZWShCxspfccd2eno63N3dkZGRARcXFwtFyIrSDAr+5MkTnb71GXsexb66CSvPhmiV1Ql1wIZjgSUuW1zdbbS8PIyqvBO3Fb5IzXs6gImrG47f8kORXr8Yq/C47q6YuO5mRvnsM/y+KRUT740GAMTM8Mawjz0tHJQe770HnD6d/3eXLsC+ffl/r18P1K1b4uJlrrvVanzuvxw701trFb8SZYdv99YwfX2MWdizrLu5PUg5iImJwaVLl3Bac+FjjDHGGGPMAnJlIp2yPHM+wZ6bi4d57gUJdAAAmTcGxtgLKTY2FsHBwWjSpImlQ2HPg+xseFhlCC/THiiLmdmClIXiKtxpu7kqTrkccrXuXW6FnNvbMlYUJ9EZY4wxxhh7QcjkFk6iy2TIURd5yowIKvN17coYe0Fx4zVmkuxsuFtlCi/TH1XQu7maJLpIBNja6pY/a3I5FKSbRFcqOInOWFHcJzpjzChyOaBWA/b2lo6EMcYYs4zTp4F794DXXtP+nVuRFE6i24qUcJNkwdOhmAXKPQAZpDpJdDMn8hljjL30rtx3wftJBYNsy3MqZkV0PDkQPyb1gZWE0PFfG1xOfhtKskLoQSf0CTNDAAoFZGqb/L9FIuBpj89Kcw9KzthzgJPojLESPUpWol8PGVR2jti4SQw/P0tHxBhjjJnX778DEyfm/52aCowYYdl4DJEpCh403VFzPLys04F+QwAEm2X7aqm+JDp358IYY8y8UtJskKlyFF7LsitmRfQ4xw7nc2sBYjGCs9KwMz0SAECX7dDHHAEolZDT0yS6WAKRSgmCyPyDkjP2HODuXBhjJVrc5w9kXryDnOv38dVXlo6GMcYYM7/jxwv+3rbNcnGURK4saIluJ376C9hcj4QDkGfIdMokIhV358IYY8ysHmRo39CVSdUWiqR4QhUtEsHBvqD1t9m6U1EooKCn7WslYjiKZdpxMcYE3BKdMVai+9ey8//IzERqavmtV62umF9kGCstPqafncTERIwfPx4ODg5Yt26d1rQFCxbg9u3bcHBwgFQqxZIlSyAS6fYLzVhZiLKzgHsZgDIPj+SVAVTM/lxkSonwt51Ynv+HOZPoWQoA+X2/tXA8j8X+X0HUrCngs8xsMTDGGHvJESEly1GrSJ5bMe/mFk6i29tZJokuf9qdi401wUalBGAPZR5/l2asKE6il4PY2FjExsZCxU1s2Auqgf1NnMutDQDw9iIAZatQbWxsIBaLcf/+fXh5ecHGxoYTXuy5RkRQKBR4+PAhxGIxbGxsLB3SC+fUqVPo1KkTjh49qlWelpaGefPmCfs+LCwMZ8+eRUREhIUiZS8q2c5fgcz8LlGG1zoCoo6ocFWXSgVZXv7gYGKJCFZ4+t3UjM9kK7ILkuj2Ynn+PuLvyIwxxsxJJsNDpZvwUgxCZdt0i4VTHCFZXaQlel6e+ZLoeci/AW9rpYaNWAmoAIWSO65grChOopeDmJgYxMTEIDMzE66urpYOh7Fy18opAevTOgMAalTOBVC2EcrEYjGqV6+O5ORk3L9/vxwiZKxicHBwQLVq1SAWv3xfOhUKBaZPn44FCxbgxo0bCAwM1Jq+fft2zJ49G/b29hCLxVi2bBnq169v9Pr79++PVatW6ZTb2dnBzs4O2dnZcHR0hJWVFQICAsr4bhjTJUuTCn/3rXYaIlFHC0ZjgFyOts6nUdfuFtQOTliUOhDJSk9Y/VYdcz4zTwiyrIJW77aa7mS4Q3TGGGPmlJ2t1R96XJ334RLVGkBLy8VkgMJgdy5mCkCpxJYak6EiMRSvRGLg+i75xaqK1lKAMcvjJDpjrES2ooIaPL+v07Il0YH81ujVqlVDXl6eUU9xXLwIJCYC7doB9vZl3jxj5U4ikcDKyuqlfKoiKSkJAwYMQJ06dfSez6dOncKQIUNw5swZ1K1bF2vWrEGnTp1w+fJlODs7AwCaNWsGuVyus+y+ffvgV8xoxg4ODvjyyy8xdOhQODo6ok2bNnBzczP9TUilQGmWYy+NXHVB9y32qmwLRlIMmQzDPHfn/129Ot489C5uyKvC7pZj8cuVI3lOQcLcRvT0b26JzhhjzJyys5GpLqj7nMRSsz6VZQqlslBL9ELVdZ7SfC3RAUAiUsPexRqBNsmwFSnh7FYJQHXzxMDYc4KT6Iyx4qnVBQOTAZBn6g4YVloikQjW1tawtrYudr6MDGDkyPy/b98Gxo0rtxAYY+UgOzsba9euxd27d7FmzRqd6V9++SW6dOmCunXrAgDeeustTJw4EatXr8YHH3wAADh58mSptp2QkIDFixfj5MmTEIvF6Nu3L1avXo23337btBXx6EmsOGo1ZFTQTZOdItOCwRRDVqiOdnCARJSfvM5Tme/pGB/HbMzy+wEytQ2SFH5Y+GAQ8lS+eOs+UMz9MMYYY6z85OQILdGdxLkQi6jCftcr3J2Lvb2oULmZAih8c8HeHt/4L8z/u2NHAI3NFARjz4eX73lzxljJVCpg82Zg1y5AoYCVqKAFmSzT/F8+/v234O8NG8y+ecZYCRo0aIBatWoZnH7o0CE0adJEeC0WixEREYG4uLgyb/vOnTvw9PQUutCpXLkyZLJS3OwjM7X2Yc8nmQyyQi3REx86QSotZn5LKZpER/5gxyq1+Z6QcbGRoYvrX+jtfhgAsCGtE7bcaopHj8wWAmOMsZdddjaynibRXSQ5+WUVsSW6Wg2l+umA4CIxbOzEQt2dZ66f3YVvLjgUeuKcnyJjTAe3RGeM6dq7F1iwIP9vOzuMvjNBmCTNMH8SnbtvYez59fjxY2RkZMDX11er3NfXF6dPnzZ6PXv37sXu3btx8+ZNLF26VGjB3rlzZ+zcuRPTpk2Dvb09MjIyEB0dbXA9crlcq9uYzMz8FsVqlQpqtdqEd8ZeKlIpRnn9jOn3RyJd5YyBR0bg+0tqhIdbOrAipNKCob/t7YWW6ERAXp4aJQ3XoFarQURlOxdkMiEGiaY7FwIUCjX4FGPPG64XGHs+Ua4MmSpPAMB9pSdG354AWU4VfK9GiXWhWSmVUNLTtJxIBBs7MaxEKqhIbLaG8yqpHF+nDIGtSIHAa0HooZnA45kwpoOT6IwxXT/+WPD3hg1wEA8SXs7qcgKA4Ranz0KR8QkZY88R6dPmura2tlrltra2wjRjdO3aFV27dtUpt7a2xv/+9z+j1zN37lzMnDlTp/zxw4dQOJqv32j2fBHfv4+mtn+jr8sB/JjWF1CpcP/+E1StWsEeDb+TjNcvrYKdWI5QyoKEHoGIQGoVkpNTUULvaVCr1cjIyAARlXqAZPu0NDg8/eUvVilARIBahYcPnyA1tYLtL8ZKkJGRYekQGGOlQDI5RntvQi7Z4vuHfXAsJwRQO0Am025sbXEKBVo4nYezRAplQC14elRBB5eTyCMJfGvVBxD4zEOQ56qx5Ul7AEDT6+KCJDq3RGdMByfRGWO6rApdGqRS4RF2d0kWHHIfmz2cSpWAsJqZSDgvBhwdoVSKSkwEMMYqBoenv1SKDhoql8uFaeY0efJkjCs0sEJmZib8/f3h4e4ON29vs8fDnhMZGRBZW8PJWpk/eDARbG3dUdEOmRwrR5BIjFyyB9kAVuJHEIlEEInE8PDwhp1d8cur1WqIRCJ4eXmVOomernbBTVUt2IiUUIgd8veXSARn54q3vxgriY2NTckzMYMSExMxfvx4ODg4YN26dVrTFixYgNu3b8PBwQFSqRRLlix5KQdnZ8+GWCHDII8DAIBLuTXwR3YjgNSQyytYEl2pREunc2jpdA5o3Brw7osZfsvzp0WOBND8mYcgKzQguK29GN/d7IPz0trIy62MRTkAtzFhrAAn0Rljugon0WUy5Kjzf3U7inOB7Gzzx5OWBoc/4oDMBkCVKsjNdeUkOmPPCQ8PD7i6uiIlJUWrPCUlBTVq1DB7PLa2tjqt4oH8QWJKmzRkL4GnN4HsNQNtqwkKhbhiPRIOQJFd8EPYzk4EuUjTFQWByLh4RSIRxGJxqc+Hv677YGbi5wAAH6s0zeahVle8/fXMEAGJiUC1atrfqdhzh+uFsjl16hQ6deqEo0ePapWnpaVh3rx5ePjwIcRiMcLCwnD27FlERERYKFL2winUeMNWU3cToTTD5jxThbtMsbLSrjPM1J+LIreg2ypbOxGuy6rhtDQYSHWEXP6SJNGlUmDuXMDZGfjggwp2p4VVJPytoBzExsYiODhYa9A0xp5rhSpvypEiR53fKbmjJNcyj3Xt2AEHetrtw717yMkxfwiMsdJr27Ytzpw5I7wmIpw9exbt27e3YFRFcL+3rBjKLBkSpHVwW/G0b39SI09R8Y4ZeXbBD247B7HQJzpgvupbnlswSK+jJDf/D6KXq2vVH34A+vXL/yHOWAWmUCgwefJkWFlZISkpSWf69u3b0bhxY7z66quIjIzExYsXTVp///799d64trOzg52dHbKzs6FSqWBlZYWAgIDSvg3GdBXKltuJCpLoRR6MtLzCg53a2Ggn0c1UcSpyC74g2NhLYCV8d3iJ6u5du4D9+0Gbt0A9/mNLR8MqMG4aUQ5iYmIQExODzMxMuLq6WjocxsosWeGBbalhkJENvDKykEf5I4ZflQVgy4Vs9DNzPKmZdritqCS8NqEbZcZYBTBp0iS0b98e165dQ506dbB+/XpIJBIMHTrUYjHFxsYiNjYWKk1mkaj4BdhL7VFKHt659alWmVKqBKCbHLIkWVZBEt3WXoxcPE30k/nGByucD3AUP02iv0w/xAFc/jYOn92fh4b3b2DaIjlEdhXrOGEMAJKSkjBgwADUqVOnoC4s5NSpUxgyZAjOnDmDunXrYs2aNejUqRMuX74MZ2dnAECzZs10umsDgH379sHPz8/gth0cHPDll19i6NChcHR0RJs2beDm5lZu740xRY4S6Up32IkVkGieyqqILdGVSkifdp1qI7aBRGJVMEC4mSrOPFnBdqzsrGAlDAr+EtXdiYlY9agbfnjUG8G3EvHjNwqI7bg7L6aLk+iMMR2Xc6ph5eNueqetPRdi9iT6zoQAXJO7AwAa2N+Eq2uwmSNgjBVHoVCgY8eOSE9PBwC8+eab8Pf3x9atWwEATZs2xerVqzFw4EDY29tDLBbj119/FX6EW4LODXBuic6KkZWm+0h1Xm4FTKIX7s7FUYzmjhdQySoTEn8/2NhUM08MhRIUDuKnL16mH+IAFjwYgkSFHxIVfuj0hwzNOlas44QxAMjOzsbatWtx9+5drFmzRmf6l19+iS5duqBu3boAgLfeegsTJ07E6tWr8cHTpyxOnjxZqm0nJCRg8eLFOHnyJMRiMfr27YvVq1fj7bffLv0bYqyQf5OcMOLGYu1CdQVsia5U4pO7o3E8pyHwwB3x3TMwOukz3FV4w2lFJWwbV/IqyipPXnATzcpWDCtxwU0Hs9Xdycm4dfQ2nKMiUMnb/GlK1f0HWPbwXXRzPQpniRRZD2Vw9eckOtPFSXTGmI4steE+wOR55u8FSpZXcKn6wGsLPD1fN3sMjDHDbGxsEB8fX+w8vXr1Qq9evcwTUGlwS3RWjKx03Vaaihzz9FVqCllOQZx2jlboVyku/0VoBODUwywxaLVElzzNVpixJXxFcD63lvD336fVaNbRgsEwZkCDBg0AAHfv3tU7/dChQ/j004IncMRiMSIiIhAXFyck0Uvrzp078PT0FPqcr1y5MmQVrokwe57JpHoaR1TE7lyUSijo6WBfIhGs7a2QrnJCmsoFSql5krhaLdFtJLASF3wnNkvdLZfj99e/wcTL0XDzT8aGP/zNPhD5w1tSqCHCGWkwIp3/hqutDICLeYNgzwVOojP2spPJADs7raKMPMOjh8iU5r9s5Bbapr24on3zYYy9ELglOitGTobur0hljkLPnJallUR3KlRfm/H4liuEB9ER4JyGV1QXIBID3t71zBaDRRUZCC5Tz1MMjFV0jx8/RkZGBnx9fbXKfX19cfr0aaPXs3fvXuzevRs3b97E0qVLheR7586dsXPnTkybNg329vbIyMhAdHS0wfXI5XKtbmMyMzMBAGq1Gmquv5keOTkFx4WLJAeZKkeACFKpumJ95ZPLoaCn9bVIBImtWOiTXKWCUce3Wq0GEeXPq1YDx48D3t5A7dpGhlCwDSsbESSSp0l0IigUZthf16/jQqoXACD9ThaWfZuHz2aaseEeEe7dzX+T95WeAAC1VMq/DZ5jz7Je4CQ6Yy+zdeuAJUuA/v2B8eOF4qxca4OLyFUSc0SmRaYoqEQ5ic4YKw86faLzF2VWjNxs3ZboytyK17S6cMs7W6dCdbkZBwUvnERv43MJMS5r81806wcU9PT6TN24Ady+DbRurT1Gm1lkZhYkbAC0DXkMwMxN6hgrI+nTAYiKDgpqa2srTDNG165d0bVrV51ya2tr/O9//zN6PXPnzsXMmTN1yh8+fAiFouLd0GSWl56WC3r6lKGLVQ4y8hwAUiMlJR2pqRXnmLFKTYVSJXoaqwppGU8gJiWICHIlITU1tcR1qNVqZGRkgIhgd/gwnOfPB1lb48nq1SAPjxKXz3qSJewreZ4MIuTlv1ap8eDBY7i5PdvvEDYXLqCDwx9Y86gLACD7+n9ITTVfK3BRdjZupTkI+8BblILH9+5BVaShIXt+ZGRkPLN1cxKdsZfZokX5/2/cqJVEzyySRG/pdA5/ZYcCAFRqEVQqQGLGXHpubsHfhPxGXtaG8/yMMVYiHhScmaJwEj3aYw/ecI+Dc6c5AKpYLig95NJCLdGdC1WUFmqJbmsvBjR1uFptli8PmZnA0KGAXA5MnAj0M/dALhkZsBMpkAlHeFqlo2mgEkCQmYNgrGwcHPK7diw6aKhcLhemmdPkyZMxblxB59CZmZnw9/eHl5cXD0jK9BKRDUSi/PqokeddtJQmwEqkQsP6Y+Dtbf7uSQ1yckKeSAqRSARbGzE8fXxgLX4AkUgEghW8jejXRK1WQyQSwcvLC5JvvhF+KHv98w8wcGCJy6c7Aa84/Ys8kqBu3dZItBHl7zsR4Orq8ey7VsnKQp5trvB5kRRGve9yk52Nm3k1hO0H2D+GvdgJDubuU4aVGxubZ9cVEifRGWM6smTaGeqmDhehJCucyqkPUP4PU3N+fy7cRWL//+bi071Az57m2z5j7CVgxpa67PmTW+ix8Nq2t+FjnQZQjgUj0i/C8xYWVo2DjGxQr/kUfLVwMHamt4bqthNWXzf6ye4yUSgLkug29oWS5nl5ZkminzwJoc/b+fMtkETPzBTGlnGR5AAVsO98xkri4eEBV1dXpKSkaJWnpKSgRo0aZo/H1tZWp1U8kN9Pu6ZfdcYKUxZqbN7M7y46Z/+c/6J2DCCuQC2MVSoon3bnYm1NENvYQPK0Oxe1WgSRSAyREQ9xiUQiiMViiAAcyw5BstITPa1sITHi/Kjnkoyl1Z4+NdbjVSz55ukEAtRqMZ75KXb3LpwkBa3mcnNF5j2vc3ORpPATXo67Ow4DNzth3Ct8bXlePcvjh5PojLF8ajU0NWSmTPvOnQoS2Ik030QIMpl5k+i5RcYZ4l4XGGPljgcWZcXIlRYcH0K3YhVwpExvyWN4O/+T/6KmNfJghVy1LaCSmO0+kVxZ8MPF1rHQTw0zBWBrC0D9dFti83dBp0rLQK46v29XJ3EukM2DJbLnU9u2bXHmzBnhNRHh7NmzmDp1qsVi0umKjTEDlIX6+bZxtAayn75QKHTGA7MohQJKyr9BZG0FQCyGFTTHN5n8ENc9hRfG3BkPgggPfsvF+28aF4PA2hrhlZKgzpbCytEWPj5muPt+9y7sRAqIQCCIkCM1T9dvgtxcpOVpP5Wqd2BaUxHBqDsg7LnCSXTGXlZFE0Z5ecDTx14y5dotPfJIAhvR05ZUBLOPap4r0658VHkEc/Wryhh7MXGf6MwUhX9M2Ymf/tisiEmcwv2f2dpqtR4z1yE+I2QbPsF1yNXWuC7viJib86CCGNG7gO7G/Jgvo9xbqcC1tPwfrjVrADBv/2+qJ5kY4nEKWSpHuEhy8DC5CrzMGgFj5WPSpElo3749rl27hjp16mD9+vWQSCQYOnSoxWLirtiYsRSKgt+6Nk42wIOnL5QV7OkgpRJKym+dZm0NQCKBRPS0wiaY1o2qWo2Lshqgp7+TVxyqhveNWa5wEt3GBq28rqKV/BDg6gpU+cDYd1JqR6/7Yv7NaCFuqczMv/OlUjxROWsVyXPL8B0vMxN47z3gyRPg+++BatXKGCCrSDiJztjLqugXiEJJ9Gyldkv0v7JD8TDP/ekrMnsSXSbXfhxHrVSBL1+MsbLQ+SHOLdFZMQrnpvdktMJ1mT+qnXPBqx0tF5NehQf8c3CARPz0uCYyW87fAVI4WGUAYjGuiOyQ+PQR6fQ082Txc9ZtB+hVgAC37HsgCjRrQzAbaTpGe29Gl+uLkZrnjn0/OGL/GPNtnzFjKRQKdOzYEenp6QCAN998E/7+/ti6dSsAoGnTpli9ejUGDhwIe3t7iMVi/Prrr3B2di5mrYxVDAr50/pPJIKNbX4loCYRSKaE+Z9RKkZenlZ3LvlJ9IKW6IV+opcsPR1SdaFW9iqVcY2hiyTRhRG5zfTE3aMsWyQrPYXXObnm/YRImosneZ5aZfLcMvwuWLIEuHo1/++ffwYKjefAnn+chSoH/FgZey7lFOnLVaHI76OFCO6iDNwu1G7qXG7BY1x1XB7AyirAXFECAHIV2kl0lVQOvnwxxsoVt0RnxRhd5wDeyVmERHkVvHPrU+xDS3Q4ZYNXLR1YEUkP7PE4px5sbYGaedYQiwt+BJrtENfcpLeygtiqoP5W55kngOy76cLfUxofhEg0wizbFTz9fmX79IkFczc8YMxYNjY2iI+PL3aeXr16oVevXuYJyAj8u5sZSykk0cU48ygAH1xeDTVEGLnOGu9+YtnYtCgUhZLoAKysCrpzITItj52Sgp5uR7A/oyX+ltYDVCrIZIC9ffGL/X67Fr672Q9WIhXePWqNtpokupnOsyc52ncJcmTmTaJnP1FCXeQpd7mslEl0ImDHjoLXp06VPjBWIXEWqhzwY2XsuZSbC4XaCtaivPy705ofvUolfgqYBTWJoIIY25+0wfwHQwAAM/1+QNcoKVC1qVlD3dRmOfb87iDEoZYpADiaNQbG2AuOk+isGNbybLhKclDV5oFQVtGeCAeALTfCseV2M0BihbVJgESTwy5lS/ScnPyBOiMi8p/qNoqmRZuNTZEkunl+jGcXasHm5GyBrt+ePrZgLcrPfBRu4McYKxv+3c2M9ZbPb3hNvRcKVy+k+rQSkqR58gr2fU+pxHfV5kFB1rAaEgOIIzDIYz86upyApE5N2Nl9aPy60tIAAK6Spx3Aq1TIyio5iZ4hs3361JgIWdkikFgCIhHyFIDElO5kSkOtRlqudoC5CrFZuxN3RhZO1RuKJyoXdLy+FAAgl5XyOCn8RCAAZGSUMTpW0XASnbGXlVSKHje/RrrKGdVt7mODJhsgyx8ASywiiFEwWjgA2IjyLNIHrIMqC55WBb9C1XL+RcoYK2fcnQsrTpHEKFAxk+gyzRiWEjFsbVHQEp1Kd59o6gQ5/ozLRZNWdvhupXEDsW2/HYGsxw1gr7BC5YCCX8DqPPOcY41tLwAeechR28PP3fxJdFWODCISCWPJKCrgccIYYy86D3oED7t0wFOFs84Fv1+Vsgr2FINSiWD7xPy/a8sBiQTNHC/mv66SAxjblQuQ3xc3AGfJ0yfOVSpkZgLe3iWGkE8kgrU1sPVeC8y/kj+A8KwDhC5dn2FdKpXiicpFeNnC8Txq1XcCURXzdcUmlUIkKnTzAYCstP2yZ2Vpv374ML9vdHd3/fOz5w4n0Rl7WUmlyFI5QklWUEFc0OdZkeeO5VRQc9uKFJZprSmTQSIqGBhMJeUkOmOsnHFLdFac5yGJTgSZpgoXi2FnB4iF34BUqkP8z22pQHYWTu92QEZGoFGt0dfdicStLHc4Zyoxu8kZodxc3bk0dbyIpk8TECp0gFoNrQFWn7U/rvrg4yurhddqNcweA2OMvfQ0v2ltbWFlU3ABzlNUsO97hb9MWFtrN/s2tfHa0wSus1gqLP80r14socsYUX536IVDyFNS/oRnRSpFtrqgJfrnVb6Da0hTQNzN8DInTwILFuT33z5pEhASUrYYnn7Hk4jUkEANFcSl74otOz8Rf0NWFael9dHO+RS8U1I4if4C4SQ6Yy8pZZYMMnICANyUV0VCAhBWDYWaseVTUEHy2kaktGAS3UF4qVJWsBYEjLHnjk6/qpxEZ8X45XYTZORYwUpUUP+Yabwt48lkkKme3vgWS2Bnh4KBRWH6b3G1GkD20xZVuVJcvQo0NaI3N6UqP1lhLVFDYl2QuFApzXCOPU0grHjUHf971AOK226I7QM0a/bsN60hzSnS4p4ICgVgZ1xDfl0qFXDsGBAYCPj7lzU8xp5r3Cc6MwpRQRLdzg7Wts9REl0szu/HhMjkivv/7J11mBxV2sV/VdU6PT6TiSeTEAeCJUhw18XdFwm7ZIHFHRa3xeXDF4IHFlucBNcQIARIQlwn4z7tVfX9cburqm1muieZCHWeZ5Ku6pJb1d313nvuec/bXuvn9tXn8lHrjmKFqsY53U4hiHJAknA4zLqiEB93r8NZ4I4OAprbWPRKoa6LiTzxBI2LGvm2Y0t2efQlih5ZOyQ6iHomfs2TO4ne1sYv/pFMXn41KjJTGw7i9aYgXTjq2NiIYJPoNmz8SdFeHwTyjeX5CxW2BgJtUa5eeSFtWh6/+EclFNm4YOUlbBWt5fLFsNlmvdNOXYenF+3GDw1DjHWa3W+2YcNGD5Hiq2rbudjIBF3n1epdWBQcZFh0AESi68FvuzN0dBCMZ48pMSV6XE2Wg51Le1WifK2iT/fUaFFVbOOQdWTFaufSC8RFczMAMpoQAahqSh31dY1UEp2ekejTpsHdd4PPB++/L4rA27DxJ4XtiW6jW4hG+a51HPXRYlx1Qxk0zBSFRTYwT/RwQOWz1h1woNJ3RQGb7wi1ahnN4TyijX3ZLARud9fHAair0fiodWdjeZhzNU7n6C73i8ftOImeUM9kXU+A+/0ENBEgZXSR8Zck6ktG26oWTlp6E3XREvb4bCn/7mETlqx282bNSXikEP5YW0Lh3O1c3mreXWT6A3XREmbNVtl1Ug8baWODgU2i27CxPhEf0a6HHN+2xsQ89HDMHy7QFuWL9m3S7qMi81NjZbfSwtYWNA3+b9lBBnP+5NCb6bfrpUBl7zXChg0bmz5sEt1GJkQiBFQxgvXKITRNJqorGySJHtLiSnThib53nzkMD81HLipgzJg7szpc8x9mEdUDC7+hcuAIumPOGtFiSnRHohJdU3vhNxYK0aL6kKXYuVS11wt7JtcUA71n1j93380PHeOY1zCMo2b+jm+PiT04mA0bNmz8CRAK8WLjAXzTMR5a83l6xx+NtyLhDau/19YucdXqKQDs/k4f7j4WHq07ircbd4YqD9NWw/Dh3TtWU52ZIndq2bucX/EK7DCTrpTkpp2L8ERXHGb/Rg2vY/VaR4dBXOfJQSQJooEIciYbNE3ji6WDqYsKe5TPqkYRDgtnl1yxvNbLi427ArCD7zdOK3uX/D0mACOzP1h7u9G2OGpqMmxrY6OETaLbsLG+sHIlnH02FBXBM890XTZ7LaO9OZlEF4R+sKOrQJmbr2quiEQAXZxwQt48ts5bACW55lfZsGHDRgbYdi42MiEYNFKNvXKIsO6MkejruV3JaG83lOgOh4SiwPD8OoYXVkFxCZRld7jmxQ2AKPZVpLQLZVg3RqkRTcjfnYqGpFhI9N5QoofDnLL0Jqoi5WJ5PZDoHYGkUX/MziVXLA/1Y8qKy9GQaP8gn3P36FHzbNiwYWPTRyhERI9RXbJEns8khTc0OxerMt7ljmVyKXGiX8/K0aWhwbzOUiWmegsGu8xgMkUBQomeQKL3ihJd9LHaNS87zHsGdYmXZ+bCFluk2b6lhd87Ks1lVWPxYhg7NvcmBDrMa9wt/2dRV6Wgb24Ha29np/w5/BEcSmOsYGptbe5ts7HhwS5xY8PG+sLFF0N9PSxeDB9+2Ounb2tODIjhoAjW4UAXkVrvXRI9GlINhajhRWuTXTZs2FjbsJ8rNjLB7zfIaa8jahQX3RCV6MHYQNTjiQ3A49XBcvAPbl/RaLwuVDq6TK+OnyeiCeLCqegMLAtyYcWLXNz3BXbfuiXrNmSNUCihQBmaRtjfu7Md/mDS90LvgRLd7+eN5j3RkChztDB+UGPX+9iwYcPGnx2hkFnXS5ISOOQNTYluHXvHvduVOImu61nVX+loMTfOV2JpUd2I3dF4E+R0di7rWInu93NG+dv8rc9/kdGFDYqmZ252XR3Lw/2MxXGuRShSz/rwwYD5nfDKMbFed/o86dDWxomlH/Lo0NuMVTX1Nu26KcFWotuwsZ6gLV7KBSsvJaorDHt1GJcd3rvnb2tOjMhxJXrIr9LVo6FXlejtpuo8TlzYtgs2bNhY67CfKzYyQPcHDHLa61YZrNfQoXgZUFSxnluWhPZ2QjHSwO02/U2BnL7f/lqzGplLihBuDeLq6pIjEUP953ToVBSHOansA/HeiMOybkO20ENhOlRfwrpwW4guhzw9zQW3wG9Rol/b/ynGDA/Tr9+DuR1s+XJ+9At5XUO0iHEVVWujiTZsbLSwC4va6BYsGWQOB3i8FiV6dMPq71mV8Y4YiS7Hm5tlPZNAu/m78ErdJ4OtSnSn05x/B1DX9f3q6ODokhnG4qN1R4GudUqiN0WFwtshqTxbeT1S/12A3GskBP3mTfbESfRcU8hiBc4LFbMP1dGN4q42Nh7YUyIbGzQNPv8cfvyx621tbDjQNBKMxHWdu2tO5tuOLfnBP45pMyt7vUltSb7m4ZAIkKFAaqTePf8nTil9Tyzo2aWV9RTRDpNE/7p9Kz5pncCC5d2srmLDhg0bGfDwww8zbtw4Jk6M+QvbSnQbGRBpDRhFtj1ueHbYv3hts8t54Ogv1nPLktDebniix4tYNkSL+MU/kp9aNqMxSxHzAFc9472LAHio7ljue7zrgpZaKGLcK4eDREPTXviNhdrCRjGvOOIigYy44grYYw+aXpuxVlKu/WGTsN/e9xujvSty5+dXrWJFWKSUD3bVUKr0gprfho0NGFOmTGHu3Ln88MMP67spNjZkhEJmBplLpaBQ4r7Bd/PwkDv42z6L13PjEmFVxrsMJXp8TXbj7mCHKZK7rupv/GPFZbw0TelkD4E9fT9wYcWLnDd2Ov36JSnRo+teiR6HR4oR13onSvTaWsMmpVRpFVqBlp7FxlCcbpBlFocG8VX7VnyyYkRu3ZYYiZ4nmxeQWivFxsYMm0Tf2PD118IG5JxzYMGC9d0aG92BpsGpp8J++8EXsQH3mjW80rSvuc16UEC2dSQNMjsh0QF8SsB43at2LhYSXUPistXn8+YXpb3XABs2bGySSBmI20p0GxnQ0WSqkXxeSwDc0JSQCxbw0cgpfD36TF647g8AZtSP58zl1zJ5wSV89112hxuXv4Lr+j9hLHe0dn29Eb/pW+J06L1Oore3pLaxUxK9oYE17//MJUv+zgGn9eWVV3rYAF3HHzYJC58c7NH3JFzTREfMnqZMaYGOjh420IYNGzb+BLDWMnFrOD0Ku+T/wg6+3xlZsWFNRlpjVNzOxfBE17MLIQELWasi813HFixc1IX1nKaxnXcuJ5V9wGmjv6O8nISi4Gpk3SvR43BJEaNNmYTgWkMTjVGhOi9xxFSBMeI6Vxi+9LLMU/WH8c+VF3PZzKNMcj0btAvZuUcK09fRyDBXFf3yWrvYycbGBJtE39hwm+mtxJNPrr922Og+vv8e5s8XZa8vukisS54t1XtfAXlA5Xyu7PeMsWyQ6P7USK0iI2MG8161c+lIjV62YNSGDRtrHRsaIWpjg0ECiZ5nGUxuSN+ZSATeew9JArdHIn/37QCQLTnhWcdOvz9RSdXR9QG0UISxnmWMcK9iYGEbUV2hOlJGVbicppZ17yHf0ZbaRmvRthQ0NdGm+visbTtU5J6OwyEUokM1Pdnz5CBZGdomN2+lmQM+OzCKxz8c0qPm2bBhw8afAqEQAU2kZHndOjid5ns5F6lYN7Aq0Z0eMQlrzj9noUTXdQLhVNV5oKvYbY1RDpFJtUX/Bh4ZcgePDrmNg3btaWDsHFogRH20iFarFZuuG9xEMtqbo0bGm1E8tYdKdOMWSDKOuL96jvVMamoldp7/FPstfIhdC37m1c2u4LrdPutR+2xsWLA90Tc2xPNzIfdiBzZ6F+ke6pEICT+/9aCArHA0skv+bGM5PtOaTrGl6gpKvKhnlmllPUW0I3UaWlNtxagNGzbWMmwluo0MsBbq8vl0iPOaGxKJvnKlaRu3yy5QKFKdjZTwLNVsAPj9+GQzC607np5eR4Tnhl0nFvY8kCXN4zl20b0AHPpqHtcdmGUbskRaJXqGgTgAjY2m/ylxX9QeaIwCAS7rN5WGaBFzg8P4pG0CUbWICbVQkYOFfmNVYl//8S/GcKaa6Fdrw4YNGzaSEAoR0PIB8Hp0gxwGejSxuS5g9USPk+iKbBYW7fYEeDhMQE+1PO3S0iwNiV5SEGV73+9iXWkucuzuo7bZxSELY3VDZBkQ7RVFwZ0p2+erLbw/4nyWh/tzTdXfOXHJzez0XDHnTcq9DYbvuySRp4RojXoFkZ+DLbq/QyekOwmpTqOeDoFA5zvZ2Khgk+gbG7ymusUm0TcSWJ6+UV3BQbwK9/ol0QmH8cghts2bj4LGZn0qgcTq1HF827ElvwZGiIVeVqJH/WEgUb2m/smU6G+/DU8/LVyBjjxyfbfGho1NFHaKi40McKghtsn7gw7Vy4DSEPcvPp7FoUFEXhvNIxebtTvXK5qbzdcDBhgvjYF4DhPgWkcAr4Vg9nd0o69iHXE6nciKeXN64yfW3ma2cbh7Nf+seImB+1wHpLeB0xsaebHxAGM52OgH8nNvQCDAaM9yAOYHK7lq9RSQFe6ZnxuJXrM6iezRNEIhyOvant6GjU0SdmFRG91BpMOsjxEn0X/oGEdEd+BZXMS267l9ViSEzRRP9O5z/lIoxFjPMtoLfNRHi5kTG7uHg138VqJRGqOFgqeIFlKsgWyddFjHvzXBiwi4HKaNSyQQIR2JLocC9HE2o6JQHy2mPlrMkDU964iZSnQJryMcI9Fzqy0a8Jv9ECObz+btNinYJPpaQK8Gc6sS3Z7R2iigh8L8ZdG9NEYLGeau4gWgrjZpILo+SPRQiCKlg8eH3iqWd78QmMDg4jaOLP6RDs3Lh607Gpu3a15OKX0P2etmyJBRvdZMpxpkrKeGRaFBRHTxyNL+ZP3mmy5tQW/v4NYl5RxwgMsePNuwsS5gk+g2MmCz0iaeiMfKnU/grC9GMDswClaWoGkbiCq4uZk/gkO5u+Ykdv69gr1XwaBBJJLYqk7ypHRnuPbHw/mkarSx7O9OtzNJ0ZZ6/nWLjnbzHAcXfcWk/DnQN/PgNVjTwmtNe5vLPSXRLQNlRzyDT9dzFj4urUpSFaoawaBNotv482LKlClMmTKF1tZWioqK1ndzbGygCLeHGeCsJ6C5KS4sAYeDC1deRFB3MeI9Ny/fsL5baEE0Sr4cIKw7cHljSvQ4S6d3fwJcCoU4umQGx5TMIKQ52fmPpwAIB7uIvdEoN685ky/at4HqAj66HUpzYfFzRMRC8vtcUcKx4tyhjgwXHqvSafin041r7AJDHFVs7/udaFE5wfYINcGinGO3laIzMt1s3m6Tgk2irwX0ajC3legbHaRImJDmIqw7Da+vqe+WApbKH+uBRH9j/lgq2v0MdlUzxFVj+MNtOaCBLfv/B4BbBj7CwQvvoyZaSh9HExf0fRny82Hkeb3WzmElzTw37DpWhPty5OK7gA0rg35dQ2tuRV+1WiyEQvz++zAmTly/bbJhw4aNPxWslaW8XpxSfFQl/DI3CBK9qYmv2rfmJ/8Yfvp0AL794eijQZbM/kW2JHpr0GlMXgP4/d3Y12og6nL1uhJd2LEIeKSYhKyTUXDr6kSv12BTDwe6CSS6+T3JlYNY0ZDElmua3f23YcOK5mYoLl7frbCxgcEn+Xl7xPViYfIN4OgjJjZ1iGxYbi7sUjqXz0a/IaxUThMVwE+o/I7DI68hu53k7/hB9w5k6auY/RSIhLu2c4nqsY6MJOFwQGvEy6/tW6HqMgOXyWy2VVaXlBWsdjM+d5SmdtHviGRS0MdI9AQrtp44zmgaRxXP4KjiGbDVVtz8xa7MbR0E5GbnYvDlisLUhoNZGBxCoG0Aj2uJtdZtbLywSfSNDbYSfeNDOEyB0kGTWmCQ6DN/97E+SXRdh1t+PhACe7C5ZwnPDvuXOfBNqqAR1kUalSsejHtbrRkbLRqFTddDE9Yn2hbVmAuBAJWV660pNmxs2vgzPVhsZAcrie7zmYNTXYRMa9dsvaG5me86thCvHQqTYt6gisMksdVIdn7frcFEFbQ/2DWJvnKFzo3Lr8YpRdnt13x2295kfHtDib7zkJU8U/kMIc3JIFetWNkZiV6byEhbSfhcoIWjfNY6AZ8SYFkoZquThZIw8WAa4/kVqaiDt1t2M9bZJLoNGxb8mZQ1NroPa9x2u8HpxBmbWI1ENgQPNgviY2+Xy1iV54qS52gByZHO0SQtJMs1y4X5KGioyJ3XBYmdP0oiib64tYQLVl4MwAmf5HPxYd2+mqxhLf49vm81F3tfxyVHGLzXrUBxyvZV9S4+aTjQzPYCwuEefKZW7sPpxKWYhUV7RKLLCmga33ZsCaqHUChRD2tj44VNom9ssP7y/P7M29nYYDB3qZcV4X4AdGheVBW2Gd7Kyp/MbWR6l7yJRABNBFS3HLasJIVED8VIdGO73u6sGiS6eY807c9TALBxTYg46XFw0Vf06TNu/TbIho1NBClWbHZhURsZoAbCGGLzvDwccYVzTIneq4hE4LXXoF8/2HNPc31TE8tCgkSv6KMbtuhW1VNWJLam0RpJnB3oCCjoeuce8O2tGj/7hQVMZWszimIyvr3RfSiS2yjyLiaqK8wJjGBpaAAFfzjYfOv027fVJgpSekpQt7eoXLb6/JT1onBclhK0YJAjij7hiKJP8MhhpjXtA5pqk+g2bFhhT4DbSIdkEt3hwCEJ7iS6oc27xDsSVh/yeIpbFt9vK4lOUREuOUJAcxPuSqWdoEQXzUiYgI+u29+YleSvKAqzqz5bLJSmD3aL6oq4r/aoxGP0pC+WVMvF6TCLuuZk5xKKxXpZEp0wVTXqmdgk+qYBm0Tf2OC0TEXaveiNAtU1iaPNtja49tg/uOLXG3my/nCCupu8bccC/XutTcEgoIuA+JN/DMcvuZXhb5Rw67lkVKI7JRFgtaiMovZi+nrse65IZgBX1V5WEAQC6y3qNa4OACKDoVRpXS9tsGFjU0SKFZs9ELeRAWc9swsdS4axhWcx1+b5cMYG4ujrgUR/9VW45x7x+r//haFDAQjXt9KkFgDQb4BJ1lpjtVCidxPBoJE9Z+yviuu1iOVSYFWUOZwyssNsS6/8xGIkQkBzM3n51QDs9FoJDx6XfvPWpkQ2JRjuWa51oCP9RUbDKlmT6JaMUyNt3Vai27CRCDt220iHtEp08byPRjcwJXqcxLXyPHFCXdPEXzd8QKRQiDOWXUddtITSJhmnFCWAm0ikayW6Yd0WU6In1jPJ5mKyh5VEd3kVaDbblQ7pMsaCoR7E7iQlukmi51BYVNcJhmL3TpLFHypoesJX0sbGDZtE39hg7Sjkkl9io9fR3pr4oG9thWI1ikuOcm7Fa2LltocCB/Ram8JhDCU6wKLQIJyNYvneD8fx6vyn8MhhJHRjZvqP4FB2nP8fQOLqt+GII3qnrd/PLeCxZdfRrgkS2yOFcSq9+Oh691248UbYfXe4887eO28MDVUhDBLdYZPoNmysM9gDcRsZ0NzhYGVoIHWREq7La0uxc+lVxAl0gBkz4IwzAKivNuVSFQPNgXiuhT319g7aLCT6w0PuwHngvjgcJ3e6XzRkjradrkQSv1eyyGJ9Y2uad7STz6i1I1ERYAx+c0QkkF62Fg3l8HyxsOWGv7uu2yS6jT81UrLI7NhtIw2Wrnbxf6vOxyVF2O2ncvbbRzPqVER7W4zVBb6pG8n0qr/gaM/jyPkwZgwsaB/Adw2DieoKu/6hMXJsN0jiYJDaSB9qoqVEVYnDi98hpLkoGz0GGJ55v2iUaIxEl+XYXy8WBbeS/E6vZYyfgesKBlLb0yMlejTKPTUnMbNjcxR/HzZX5iOj45RC2T9eIhECWkxpIEvkOcL4oxLoNom+KcEm0Tc2rOPqyDbWElRV5DvLMh1t1qevRGsrqZ9jL4/CQyEMJXocaqxJgZBEWHcSVjMZsOnoWnbFyXqCugaZOQER+K/o9yxHl8yAk64DRvXK+bk+VpTmk0+gsRFKS3vnvDE01ZgdiLpoCbW1UFHRq02wYePPAXsgvuGjtVUYkHcmhV4HaA84gCgFih/y8lIKi643uE3P8prq2KBSkqgYaN6fXQYu5YvRZ4sB4XEfAN0zcA+1BNFicX5C3jx28P0O5aO7FFNbSWSnS0ZSLEr0Xkihn1dVxMrWHVAsFnBqNDMB0OY3SfSdfL9y5J4SMCTn81sLobmkiJHNp4ZzuPgEJbpNotuwAWmyyGxPdBtpUN/s4JO2CQD0r/KxnzNoTK5GNjAl+sK2fqLuRcDFTmsEif5b8yAeqBW1MMrn6owc2/VxpFCIoC7iv9sjcX7+K+KNrY4E9s+8YzRqKNGdioiXitOM3eq6JtENJbqE7nDyQ8c4wrqTkgUOxo1P3T4diR6K9EyJviZSxqLQIGgq4t5Jj3OV+26RDbD9d9kdKxgkoMX6WbJMsdOPP+izSfRNDDaJvr6gqjBrFgwfDn36ZLdfTzB7NrzwAhx2GOyyS8+OZSM9amvh9NOF/Or55xNJdDlGoiePuns5q0CQ6IkBKO4P1510KDEg7Z0OiDVlyyOZ6czrBeuho95QZ17ri437U/g2nHVWrzfDho1NHzaJvmFj9mz429/ERObrr/daNU9dh7aQEwiSL/shr2T9KdGT+wpNTeJ/TaN2Vew9h4O+/cz47HCAI24FInX/O+5vMAncPDnG2naDvbXauThdUqKvai/8xN6ZP4JXVieSBdFOSPTWgCkYOLH0A3YaPLJH57dev0cOG4IE4YmeJYJBjlx8J43RIto1L8Pdq/E4VLze0T1qow0bmxTseiY20sA6oen0KOBwGLE7soEp0Y1+hCQZGoFcrNikUIhQTAXt8VqusavYHYkYmeeOmJVJwvnXsYbT6NpIEn7Vzd9XXAHAXm8Wc+fRSRtbJ5IVxRib95REj1rsbAxXnWiULgvBJCMYZP/CbxnhXklgi4l8Pa+UqpaRNom+icEm0dcXXnoJ7rtPDAbffTfRA6szJCuYw+HsFFlx9u3TTwWJvzZx660wc6awvhifZtowRwQC0NAgRMBjxvS6AC173H23INIBHnyQDn+l+Z4kSPRXv+pPde1xOKUoZ5a/iR7UcGb5jO4JQiES7FzA9IcLdqO6tRbNoUBWjggFzI6DW471MnqR7ApqLr7r2JKtvAsoWQ+ZIJu5VlKsFNAc87oNBXvv3tuw8aeCPRDfsHHBBaIPVFsL//sfHHNMr5w2FDLjY4HiB58vQYneq2FhxYrE5fp68f+qVdR05IvXHk9itlJCZdHux85AcwgQfVNvnITvxggwmUTPz9OYNvxKFFS8R/0d2KzbbcgFoTSahE7tXIJmp7JIae/xrIjVziZfDqDqMg5JxSnnpkRvV/No17wMcNYzbfiV4vPcqffs/2zY2OBhK9FtpEE4YMkKynOAQzVid1SVs+ZG1yXC0VicthC41glorbuFPYMWJbpXgXg87IpEtxQWdcTI84R6JutYib5L0a+8OOwHwnnFuLc6kGfeKQMgEk5z3lCIoGbONOzi/ZGtvAvxjd+MnPsXlkkEJAmHK6nflE0huGCQYe4qhrmrYItylq2MHcsm0Tcp2CT6+sJ994n/Gxvh999h6627t1/yaC0a7Tar/NRT0FJzEvmyn8l93hCDIUsqcI+wZIlQhoHw51yLBP1tt8F774nXr70GlZVr7dDrBitXJrzu6BhmLus6ra3w4S/9+KXhYACerD8MVubzyU1QWNg7TQzVtwHJJLr4PxAyA0W+HDC8yIe4qlkR7gd0nhq9tmFN2TKU6L1Idt245iw+at2R8d5FPL0e8vb3L/2B/oM+5Izl1wEQao8CG/pMkg0bGyFsJfqGjY4O8/U69rPQdfjmG7j/fpg0CcP+TCjR89gubx4SOs7KgZSU5G79kTXq61kaGsDVq89ljGcZ19b9hqTr8NVXVEfEoBO3h759LfskyMm6Tzb5m0wSvTpSxtftWxFZNIgJ7ZCfn3m/hMKiLlFYdLh7tVhREMiw19pDKI0QoDMlejn1jHSvpFX1CRK9h6Ncq/pxz4JZXNj3RbFwyNtAUXYHCwQI6uJmWwuLdrfInA0bfwrYE+A20iActEzoeh3g1HAgns8OSUVVzdqd6xWaRlSLF6KUjDblokSP+M1xqidPNkh0NawidzZpYCksaijRrVlk63ieqlBvodBTAyUdtJeb15CWRPf7jYkCFIVTy95l27w/YLNdgc5rtmREMonutNyoaDQ7Ej2poK3bGb8GnVCw9zL5baxbbAiPDhvZSKvTkehx+P1w3nlCnf7gg1BcnLDpu+/Cisb9KVQ6BIne0AADBsDXX8PUqXDCCbDHHrldQ+u6K3hotaBubNwISHRrhIpEaG8xP6Or+v2HXfe8g//dk/QA1XtXzRa++U7ghIR10VhRD7+FRB/uXs2cwAgAzip/i+uqzgGymBFfC7ByJffWnsgX7dsy+JNBnHpU75z/o9YdAZgTGEFtVZSKXuRLAGhrM71QgaBNotuwsW5gD8Q3TNTVwTPPJK7LxcpF1+Hqq2HhQrjjDmGnlwY//yw2q62FvDx4/nmMzK24J/pehbPYq3AWbL4d9O8dRTwAra1cvfpcFoSGsCA0hEMXLWXrK6+E6dPZs2AcDkll9pgTEvpJVR1FvF13FJousfX3CpMO6d6pBvhaeGjwI/g1D/9pOJQLVl4MDT5erIJRnZQkSSgs6pZzVsLnivQkeoaNVZUzS9/gzNI3qI8W0Rwt4LeqUkZlmeSZcC6L97mZsdBZIzJDDwQJamJyxCgsCqKf30t2RjZsbPCwJ8BtpEGkw3xmOgs84NB4fOgtSOhIO08CxwPrsXUWRKOEtZj8PIOdS3ftwEIdZvzx+BSmzLmMHzo2R1tZwDd3dhLXolEeH3obQd2FfuLJwODEwqLr+icWF6m5XAkq8GgkTb88ECCoxUSgimLGxp5Y40YiqJjZAPNaBzK9+lSiusJBP2lsvVMWx7ISFx4Pbqd584IdKjb9umnA/hQ3BGTTEU7uhFunBp98En75Rby+5x5hq6Kq8J//CP+ogLBycccfNvX1gkS/4AKx/OOP2SvI335bKNB32y27/bKAlUSP239mi/p6QcB3NvBba7AOGJctoyOyr7G4d/53FJVphCOpJHpvipzV5avwSGFCuhM9NiMaV5cHwqL9DknFJ5uqMWOGlnWf1mWFdUC8ItyPFeF+bDvfzam91gITc+fLVOzYyycNhUwFGnESvQdoaBASy113TZlos2HjTw17IL72oOuwerXoY/RUMXvzzWKy34pcsuh+/hk++ki8Pu88oSxIgylTzLGY3x9bGVOilzpaEvtsvW0j0NrKgtA4Y/GnpSVs3fAaABN9c5nomwuPHQGWrLbqYDFP1u8FwKk/d59E92lt7Jj/mziPfwzzgpWga12OU63KsfVBogfDqd+3jPy1RTF2f80JvN86CeryeaMGBg/O7fwRq/rRlaRmy/ZY7SGjuKtbtkl0GzbSwo7dNtIg3BEbWEtSzM7FgSzF4tN6sOfMCIsKPKOdSzcLioQtJLrb58APIoZogmfojEQf6KoTrweKsb/ilJHRkSUNmXX8G4t3LJxOHF7T4jhtFpnfn2DnYgjNekKkJHmir/CXM61pZwDGLMqeRJ8fHEpYc+Jp6cvY8tUcV/IxbjnM4P7DsenXTQP2p7ghIJvBYGck+qJF5uu5c8X/b70Fjz5KQHNT2yIqM9RFS7h01fncFffSzBIffSTGxuEwnP34TSIg/fZbTseyor4eXn0VdtgBtt3WXP+AZaK4sTH747a0wBFHCG/1e+5Jw/erKlx5pWjA7beTaCaaA6wDxtZWaiPmLECeHBQVsJNjt673am3RnfJ/5asxZ6HrcNjie6iKlBuBKhgRZLlXCuGSzIBkJdF71c4llEZVtp4KwjTUrwelajhspB8CRIM97Phdcgn8+qsg0e+9t4eNs2FjE4KtRF97eOABeO452H13USekJ0gm0CG3wZI1Y66mJnG9xUst3B6GjnYoKABHbDAXU6KXu9sT87/XNom+cKEQROy9N+y3X8rbWnNi1t8jqw/ljMLXEjfq1y9hMbE4WBbfcWMGAVyWeiRd9VVGljXy17KZRHQHIyv3QEPmraY90JEo+bWcPY/vfhNyQShiXnCeHMSveTLzJRbFmDEQ1/QeuQWpEQ0ZHQ0Jh9sqJcw+dgfbzO/54tAgpqy4jIju4NB34JATc2+jDRubFGxPdBtpYCjRFUWQx9bYvRGQ6FZPcjWdIjsNQn6LEj3fQdQogi54Bp8vw47W+xG7TxUlEWaOPU2sO+laoGdFtzvD/Jb+LG6vwNnYlwkRr9msdNcdDlPqaGWYq4pgsQsFleZoPqEWD+Vqds4rBix2LrKSONmQdVHwUIi7qk/ll8BImNqH7w65he37fSXeG3oOYE+AbwqwSfQNAV1Vtfj+e5gxA048sXMS3Yo4GfDOO7SrXg5f/G9wmjLuZrXALEjVBXRdnDb+UH/9dVOwfpruTEwx7QGuuAJmz4annxZC2XS1Vi1jum7jlVcEgQ5w+eXw7bdJG7z1FnzyiXh9553w739nfxIrLE/vX/wjWRgScqZJvjk4JRXCYcLJFaS7oe5aa7AQRZKEQZSbSnTxWPDKIUOlDklK9N60c0lTbbvXRCdJJ8plEqenuOLXE5lRvbmxrIV72PH79Vfx/5df9uw4Nmxs5Hj44Yd5+OGHUeNx1CbR1x6ee078//nnKSR1WoRCgizfckvo06fr4+fCcsYEC5oumWq0G28UGXWTJ4s/XYeVK4RKoLpaxPOKCggFkdEpz/OLiXJZBk0TsTAbe+rGRjGzP2xY+venTBHbzJgh7PWsI7kVK2h+6HkgMR1K1WVCuhOvFBLdySSFcoIQPJssMkuHy2kZiHfFPYzrU8e4ilfFwqid0Vplbqk+A4DxX7nYs/styAkhS5/BJwfwa57MHFsCiW7WXOkJib5z5Wpmjr0WTZdYVbIlN849iygKO8zwcHCW2ZChNrNjGNZdfN+xBQDbrbKfVTb+vEiJ3bYS3UYahAOxYKUoglOwkujrocZVRoTDFhJdNpXoOXiih/zmdm6fg5Aldnd6yWlI9FzrqWQNXWdG4zb8p/4QaPTyaEMVChoqcvqi4KEQ/6iYxj8qpsGpp3Ll7cfwcctEWOnhf7XQv38ObbCQ6A5FT5xvyZZEDwYJ6eJDlJWkIqUb0uSNjR7BJtE3dGiaGFSBSEVOTt/s6scoy7zRvKcgzRXzIRDVFahfk7p9UqnqQABOPlmMgZ84+XMqv5jK3B/vAUcRoBPSnXhYO+zv7NlmEzo6hNNEcr8okENNqvZ283XaAPL77+br77/P/gTJsIxY4wNHEIqoL9u2JjpDIxxNtXMJzZ4HJX0T/WvWBTSNf668iOpIOUVKOyeWfkCblofHK/P22+Op8/uADmqjJYQD5iOiLlpivO5dJfp6JNGDwYTiqrnaCfUE9YH8hMkMNdyDjkwwiKZLBHUXebJdItzGnxtTpkxhypQptLa2UlRUZKvZeopPPhHk8667Jq6fN0+kmAHcequwjrvpJhhn2pJw//0wbZooejJtmoijv/wCjz2W/lyZij/qupjpb2mBU09NHDSHQtxZfSrvtOzCFf2e5aDWVkGgAzz+OJxyCpx/PoQvNPdRVVgj+kp5cpCBvmYApjXvx79Xn4C21MvNH8EBB3Tj/jQ3w2GHiY7Mgw/CTmnyg60zte3tif2B22/HIamcU/46j9UfaR5WLeC+mhMY41nGSWUfpBwyoThYFrF7RZWDqvbx5Mt+03+0G0r0hI6Wy4WkmDG8N2J3OCrO55IivLXZxTgkFXnK34EzUrbVA0FOW3oD+YqfmR2xyWpd61nd2tj1y5JOu6OIt1tE+mP+AicHZ3koq31bgTtMMCAG5lbfeRs2/mxIid02iW4jGapqWmvJMSW6LPNh2yR+9w8jovVnchOUlHR6lN5BIGCS6LLpiZ6Q9NbN2N3X0cC/BjxGSHMzdN9LePPV+G+j84x3LRTh9aa9cUpR+iyqYBJ0asX29dfw6aeimzWkp7XCVJWwZrl+tyQKv+pyeprLeiEuF66453hPsvojEaIIEl1RSCgsGs123B0MEtZFn8nj1jfcDAgbPYJNom/oaGkxXy9dCiOTUmkyDfrjRLgso+qxh6BmPoCjukMo0ZM7HkmGWc8+C8uXi9fnXyDx9ohf8C9cDWOLBPGruUDpyOXKuryMuXPhH/9IXNcpid7QIGxZSkrEQD02g5o8GHr1VRg9GsaPj62wPnEDAZg5EyZM6FJa9sMP8Pe/i9eyLHYzFmJoV/OM19Pbtmd62/YoN3hRgkk/vXCY8LU3w+AG+N//cq9o1R2oKstCA1gVqaBIaeexkk+Ndr/ccZ2hxty/8Dv2K/yOS1ddQKW7imNLPmaiby4yGgP2uRfIX3dttGCfPr9Q2fYrQd3Ni437i0vorf5yKMRbIy7ijaY9KXW0MnL7Y4EMCsJ1hEiSdY0ayj0Aa00tnL7sXywIDeHfg+5jl542zoaNTQm2Ej13fPMNXHYZAE2n/ZPzl97IcPcqds2fzT6//SZI9AULBMENIrjHM8BAEOcAy5aJfk9JCZx5ZsppHq49hu86tuTKpS3EKfgff4RzJmsMDi/hyR2eoGz2DPFGW5tZ8wXQQ2E+bN0Rv+bhqfrDOGjGjMSDT5smxAoZMMRVzbiQeF+RhV1HVvVMXnzR7MRcdZUYgXaGZBJ95kwKFTi7z5vsnP8LId1FmaMZjxRietv2fNC6E2WOFpL5/FzFZNN/7cujKy8BYCvvQrGyO4NU6w1xOJAU2bA36Q2uKxgV/Su3FMElx+JlhoFroDnE3GBSTNf1jHM03YLl+hO8XbuZjm+FlUTP90Soi319IiGbNLRhw4BNottIRlsbIz0rOLToCyKDhtG/fyUA3/i34t3GnaDDzfGtGwiJ3tjI+DwRY8Mjt8TrHQhAvifKCPcqFEmlrKh7ArsiWjm46Achvdr+Mt5zdINgfu89ojfdxu3VTwOw7ec+Jl1FIg9i6TyEl6ziqmMCdHToLPi2lKnvlmdxsWmQoMSXcHodOKQoId2Z3hPdeiFuN+74NWo9iN2RCKeWfkCjWoS8zwE42q0kevZ2LkFNZF+6XYDTia6DioIUilP1NjZ22CT6ho6GBnQd5gWHsZl7Fe7kgUCmGa04GSDLDHFVi9dakhI9FDIY5rDm4Kv2rRm1NMKg0SaBu2KFeciqSDmftm1nOQeE9TSeKzkgWeGraXDhhYkWptAFiX7XXfDTT+L1W2/BkUKplUyi33GH+H/GDCgqIlXRdu65wjf6+M6NO62CMWv/TZdkfuwYS7mjme19v/NOi6AqC5UOWlUfakMTappAFtadYiJg1iyYNKnTc/cIqmqkGSVY8WgaEX/E+O7sXTSL3fN/4qORUyhUOpAlnT7OZrFtn95Lg9uv7Ef2axczOf9t2ouQ7kTtLU/0YJAipYPTy98Ry/1TPWrXNaJJWQtaJHcF2twfAwZh8M+VF5NlGWEbNjZtbKoDcV0X9T4WLYJ//Sv3iomd4dprjZdHXjWGNi2PecFKfHKQfd58E445BurraY7msyLcjzHaMtJNFes6SM3NaYsmLgwO5j8NfwHgwml5fHijDvffzzl3HA1OJysbwuy/5DQOK67kwooXyX/uOTjqKGElU1iIFAoaWT0aEnz4IR+37sCnbdsxufwNKmMWNO+MuJBDF91jFHSM45iS6YY+wWnJ7Os2id7WZr7uSCM+SJ7EsabR3Xkns/2j+L+6o+nrbODgoq/YwSey6BYFBxkD0G+YlEKiy0r2xclA2MLHUerugACin9DF9YYDKmgOoQB3OkGWkdABKV6fdZ3Ci588OShq0MSRoa/c0RwhZSjUHbV9Z7Ccy+E1v+U5keiWInEFXhVifWVbiW7DhgWbauy2kRtaWuCFF9gl/xd2yf8F9jsARgkRllOJPYf1DcjRpamJE0s/5MTSD+H0KVAouJbxgxp5efiTYpt9XgL6ZT5GHFZOw+PBZSGYM8a1664jopt9rridTER3cF/1KWjIDP5iECceJ9avvPg+OlpEZtfcn4I0NvYwiT4SMfkkScLpUVAk0W49nQWd9RrdbtzOWH+qJxPgkQiHFMd8y/cazzfv94xEj/MsLjd8uXo4F86fCsC5L7s449Ic22hjg4JNoq9nBDUXl1xdRMQlrLgLCpI2aGzk0fqjeKr+MDb3LOGZIU8lDuu6khXJMjqxB1AyiQ7GbN5/Gg7lifrDyfuri+mfmULoZAL60lUXWJZ04yGRAq17JqGhkLBMTZ4JdjqhoU6FmloI+KGgEPqUEwx2Qp5+/rn5ev78hKakwy+/xIqMJkXRZ+oP4e2/V7Di30KJv/nm6fdPd9xly+Daz/7KvFXig9zSaxZ7LZD9tKq+BC/6uDoLMCtNr+uorqpGarZbDsPQoUa6QaQ9BLHvSzz7qNjRnnqMXDus4bCYfejXjY5AHJb7oUgq6M5etXNJQG9WfwWRjmjxov9w5Hm4jzkfqMzpcOHGdsD8XS6YG2XUODsM2LABbLpK9B9+gP/+V7y+5hoR2DrDkiWwcqWoIH744ZCXl/C2rouQMWSIJcxbsubaNHP7aU378PdVr1Gw1160TNibfRY+Yrw3oyU2kR3D523bcuOas9j/tiiXDbsv4Zy3rvkrrzebbtoNHW747jt4/nloTZzcfKt5dz5pncg1/Z9iz8OOQMrz0vGfaXzydZmIwcDKcF/mfNHMlauvA+Cj1h15hStZHhrBBN88nh92Lc1qAQuCQ7iv9gQAFoTMnGWnIz4Qz0KJnjTwS0F7UqxtaxM3+/nnYdo0fvb/hR/9YwAY713EDr7fmR8cyvkrzBHZgKNSLWIS7Vy62VagvcPcr6QgCs0INVtQwxpHkvHoN+OZ+ocwLnl8QT7bljUgSxqqLq/7LDJV5YXKa1LXZyDRhed4Ugzshu97Z/hpWSkzqk/BIalsPsT8LeRCog/11PDvQfcT1FwERm/NnCrx+UayHdTbsLEpwybR/zzQNHjiCTE++/vf02du33ADfPGFuWypyWKN3evVWWPBAiFqWLZM2NjFYSVEMijBO4OUiUTPpESPqROtosj4LdUlmVea9gVg27lO4rWsFy+wtEVVaW7uIYkeDhO2KNFdXoWPRp6Lgop05hnAuYnbh0Jcu/pvNKsFlLy+JRXOL41r7AmJbsDpTLJzyTJ2h0KENXE/3W5QXOY4PmtC3sYGC5s9WR+wBPun6g/ju5+c4BQWmVddlbRtQwNP1R8GwO/B4QTDMl7r+5kiwPLlQmotSagG7W6xc4knk8SeNk/UHw6Av0Nn/nzT6sTkEJMfILpp55IOTzwB48bRNG5nnn9RJhKBMWPgoIOsh9B57IK5TJ0+QBigx9r5l7/EMrsbm6A5JrsJ1YEEgYAoONbcLLjY4cPNwy0ODuTDhgnslP8r21hOc/nlwnr10UcTC5MaD3zLE3d5qB8P1R1rLF98MXyQajGKrsPUqQhCvL0d+vXlxBO9LFgANPUHxGD418AIY58ipZ3VEbNg2hbexcjozIltYwSwTqK6pgmnnq5q0XYKqxK9ooj2kdsQXNyMqiuE2k0lusupQ35+6sA+doxczsvxx4v0hltugf33795+lqgvx76HqtZ7SvRMbekVhELGhFeh0kGZowVcubehvS4AmKXZ5/+u2iS6DRtxbKoD8WXLzNfWGiDpMGOGCJpx1NSItDALHnhA1A3dbTe45x6MlDE9Q3Zah+alQPHz0vvFCeufegouushcvnjVPwGY9kKEc0Z9QFGsm6LpUgKBDnD6+J8J/7QaRU9P5rZpeVy++jwOKvqahmgR3+8BuMYANcY2N6yZnLDPcUtuA2AH3288POROACbkzaUq0oe6aDFnlr0Fe+0FWJTo2ajZrKO7pIG/rsOS2W1U6rKhwKKtTdi73X8/IIj+OEa4VwJw/opLaVQLxax35TD67Zh6/xOV6N0fDHb4LSR6kQbilCJjjTSTADEEQ+Z+Hp9iUaL3wjxVUpr3tDW7UhXpgzZjPBedn6atbWk+vB6SK39UF/FK0/YATAnPNdZHu1kYzopCrZk9Cn4EYMmw4RBzADK8fm3YsLHpToDbSMWHHwqOAUTR7xNOSN3GSqCDGMvGkNME+LrAE08IIh3M/yGRjc7Bi625zcHK4BC8jijlYQdOZxfXW1UFYNqpAE6XiOGy0zy/MQEeDDK/bUBCu3pkfwYQiSTauXgUHFLsetMF43CYH/1jqY2W0GdpGUcY19iDLDLreZzOhGKgWRPf4bDBs7jdUiIhb1uxbTLIij1ZYfX26M7BHQ4GDBjQ9YZ/Iug6rF4cYmCsfufvQZMF/uWXNDs0NgJDjcUUK4fOHqqXXw6TJpFuzGQo0ZOffEkdEePwyR0UTROzmpmU6LEAt+CMx3j2WZGWNGxYEok+Zw5Tn3MCa0CSDUna//4Xez+S+CQ8Ydj3nHvjIbS3wxFHiPHl3XfD9OlizmDuwptA13m+8UA+CH5MgS440HvvNWuHpb02S1RpUgsTtqmvF+cYNkycM05ef/QRLJwbhrpasWLVKhZ4Yn71GfjdIiWRjH5syK00RItYHu6PWw4zzFWV1LBE1NTA5Mng88GTT6aIAzvHzJlCWfiXv1BXoxmf24KWCi7//CC+Xyisb46uj0BUnN/pjn0mMRK9VfUxJzACTZcZsERmRLaFRGbNMv2Brr662yR6m1/BpTlxSRHkGLnQW1xX/ZoI/1x6I03RQrbKW8BfV7gZ2fVuaw8WnzgHse9FDwYL7Q0hrCR6qD1MZ2SIjU0DduzuJjZEEj0Sgeuvh1WrxOTjurBiseLyy4nqCjM7NmeEeyUVL7yQQqLHXE/44gvhQHbzpTpfzpuKU4pyYOE3KYc8ZNG9jPcuojApBlbHnOZannyVwqTH2rkrruCRIbdTpHQkTGzH8cxXI3jm80p88radXs57LTuLF2ogsbgTsDycPiPq+44tqI8WUe5oQZZ0Lusn0nDZZhv45z8By0CcLgbi7e3CmsbhSCm4acU998BLTxeza/0/uXfwPbSqPgrb2gjfdAeypBDUXCwKDQKg0rWGrbwL+KZ9vCDQAbx54HSm/XrkTKIHzUFkXBznkiJooc5J9IClGLjHp4AkGxPg6/wnZu3T+ny83zpJiBl+LOVCPVWAEGo3PxOnFBXxVusZiR6xqNbcHktR1VwKslsm8h0FpoTGVrP9OWDH7m7CLgr+54F1QP/qq4kk+pw58MYbxqIan5S2kOgOpZuxe11C10Vb06G42HydA4n+RdVo/r30cJBlrpsOLsukQVqCefVqIIlE94n+SWLfIfaiuppW1VITTVV7VogbhBJdi9u5yLjyHAnvpSAUIqiLNno84FbNa8y5LZEItZESZEnDFfYkEt9ZToDrwZDBs7g9UiIhn8Nkuo0NE1mR6JWVlUjdlMDqus6wYcNYvHhxTg1bl1i6dCkXX3wxeXl5PP/88wnv3XXXXTQ2NqLrOn379uXCpMFjT3H33fDyC04OqZnMvwY8jq6b91OSBGc+ezbstBN4vYgRqgUpD/xu2LloKSpyC4kee9ocWvQFb7fsBppujTWMGyeKdqUQd6pGp3YuMSy//00oECT60qXw228wYkTM7vSVV4CTxYbV1RQMKkqwDE2+thEFNXi9IhM9vt3FF1s2iDUxrDtZ1VrIHad3LrozxlqWQVebmspMv/SS+N/hgEMPFa8fewwIWR7s3YjE1lRwEOq8Aa56BriEvYtxizOM3t5804h1vPceHH10+vOsWiWUgsuWwd/+BjtXrubdE15lmLuKrcMRXl1xsGVrCZ/JqdK4pNm4787hg8HRZpx0ebgf/1wpbvgJH3m5eI8uLzkROUa2o3+9noZwPv2d9eySP5uA5qbP8NHkamkSx/33CwFlYWFC7bkE+FsizA+K83zUuiM/Pl3Ehxel33adwEKiO6XY96IHLESh1gyYKodQhz3w+DNgU4nd6xwboprtmWfErC2IGeZzz+1087TIInXpi7ZtuGiV2e/5ZvQZuBC3ZtkyYeFSUQG1sfnjq85Yw4/fifgX0R2iHxGHohjxZGW4L1t4E0n0Tz7RmbBFCJZuzva+yxPe+yM4lEMW3cdbm13M1IaDSUHMl6RD86a+lw7BIOR1c1unkwNap/FewfFUOJtEsN1tt4RaJV5n7Hms66n25q2tYiCv6/D441BWJvo7nSjRX3pJ3OAv2Zon6w/j0bqj4GQJEIW+dvL9avi5b+/7HemSi3nxAssAO2YPM3Zs6uV4XBrjvYuQ0RjSrzB1gwxoD8SVYTJHbrmQ4+oeEl+lA96hs8LigbA5YPQWOMAviwlwnXXviW4dcOflmWq2mLrcmdRlDXWY/S2fHKBZLQBd7xEnZ7VtcXstJLqWw/PF8p1xFPbMGsbGxgc7dncTG+IE+KaOuJ3ascfGvFHToK5ODJi32QYOThPHc4F1jOxwCOLk449hxx1FcXOLZeoxS26nLlrCwMfKeflUc5f4caKLl8M2Q3qY3p0GVVWCDM+kdqurS+F3zll+FSvDffFdNYJXY2W4VrQWc9vyK1CR2eOdQk4c3/Wpg/H4K8m43bD/wN8Y55+FyyMzeuzjqTukI9ELhD+67BBZZDqSqURfs4Zr+j9FuaOZJ+sPA1VbKyR6cmFRA+n4lXDYsMD1uMEZ30TXY7Exh88zHOaYJbfToXmpvKcPd++5jEm+OTgklc3675DdoQJmB8LllnqmarexwSIrEn2HHXbg5Zdf7ta2uq5zyimn5NSodY2ZM2ey//778+WXXyas//nnn3n99df59ttvAZg4cSL77rsvW2yxRY/PuWCBiCOffw5oOu+07CJIdBJJ9L/9TdiRHnZYrE6XtXolIKtJD5NukOjpleixjz424LAONN5/H6ZMEYsXXCDGjX+fnHSAZUuhpJSQO4OdSwy6I3HE8te/inGl1wuP7jSarb0LmB0YBZqaSKCnubYSWXiuWqxXrWdKWPp+RX9+70LA0dwML78MY6r7sTUi5bZN82XcfvZsk0Rvb6cTc9HUh7eMTkO0KGGdX/NQSiuaLnHJqn8yNziMfw+6ny3ig6Y5c4Sv26RJcPHFlJWZ+95+uxinn3FG6tkvukh8h0D0Jw4fWMWb1X8F4NwrX+PpoiMTmmqximPVvDZABH3n+LGCkY9BwXzwq7koqnSd2kgJ9dFi2rU8to2mCAPTIqiKjdxShBsHPCZW7nc2kF1QS8a774qfV//+mUn0cEcELAZKVoVdryAUMjoWNdFSnm04mD4/9eOgzmveZsQuff7gmcrn+E/9X3DLYYZUHNT1TjY2emwqsXudY0MciD/2mPn6q69yI9GzmBx4Jla4M457a09iwJMhXnrdbRDnBsIhfpyeVBXcirw8Y8a7TcujOlKW+L7fb5CEMztSi48ENDf7LXyo221Ph1KlNabW1qEt1ZrMIan0dTSaVmv9+4ugKCvojz8Do4oSVGxxlLhj3nC6iCOPPy7GxOefD+7Hn+aP/3xDh+ZlC69E3po1wpM+dq2aLvHQisNpv1XEa/fS+dBoWr09WncUxsFj+LZjS+P1FlsAu+2GjKUPm+elb9/0Y/aKohBPV94oFg5/EhjUxV0T8IdE7HE5VFw+p9m16WLEHAyb5L63wAFB085lXVuxBVrC3LL677jlMGM8YTODi/QkerDd7McdWvwFJ5Z+gIKG74DpgEIusHI87jzzGLko0WtbPaz2j8YlRXArZtEkeyD+54Adu7sJW4nePYTDcMklYhB7992pBcmywT/+If7/7juRaZwOd94Jn34qVGDbbw99+qTfrjuorRV/VlLV4YCbb061b4mhWS0ggJdAfrmxzswig+i1N8Cwc2HChNzblYzp0+GKK4Ta4KmnREa312sS9Y2Nabx7YU2knNpoCYVtZpZXUHPxg38cAMNWd4+yC8fnXWUJtxsqS1qoLJgn/NWL0+ywejVhzcEX7WZWn6swVmRUUZDRUZESlOgA470LObZkOh45TL+KkXRWJ6XrRocTCou68hy80HAANdEypM/HceGViZtrAVPp7fFKOCy8iyi6nYNNaSRicGMOp8TQigAPDHlYvLfLw8CIzPsmIeQ3n0eevGQS3Z4A31SQ1bfM5/MxdOjQrjeMwZ2ucFI3EA6Huf7667nrrrtYtGgRldaCC8Abb7zBLbfcgtfrRZZlHnnkETbPVP0xDY477jieeeaZlPWLFi1i0CBzcFFZWclnn322Vkj0M880ajdklOLoukl+vvVWjERvbmawq4aV4b4UOQMU0pq4U6y3vno1vDp7D3bzN7Bt3h/G2xoy/Zx1Cbtc1ncqXjkEURecdRZgJdE1/vMfk0SHWF2L5EF4NAp1tfiGBOgMySR6/DCBABT08RDSOyHhLZ2iCXnzGOMThpzlZixk4EBYvcgPK1cRH3Be0vd5tu1TxsNdkOhGDFs8mU8qv6dQ6TCLe4rWYiXE4+KO6uUhGldFO/HHTn1AeuQQhUpHAong10SQ+qxtO75oFy7ut675Ky8GYhMnkyeL+7x8ORxzDC5XopL9kUfExPu4ceK+BgIiTi9ZrAkySBE/7zd/HAQIouORuqPBQpqfs+0sAkXmb3rBanME7tpyNCgLRAcJDCsVyC4l3NxJ4/bq041r/bCFhImBTPsEVfGZuOVwwvqeIj6Y7ixtW5DoJgJhGT1NSvg6QzhsZo0AD9Yex5bfu8mZ+m5oYAvvYu4efJ9Y3noXulXt3cZGjd6K3Rs9NjQleiApviYXZF6xQqQl7bsvbLZZ5uMk2baFw0IYPXiwUJYP9DRw1WVRqrUK/ggkDhRebdobLlgC/fpCicWr099BKqueBLfbINGjusLCUJLXyPLliQF9HaDRatEWSY3ZUV3h1eGXM9u1PecF7kB1mpOmJVsMhAxdlFKv0aFLyC73+WD5XeV83v4vY93/RlxI/5ivOcAP/nFMrd0dXlWJfvYtB658HGquyHwRXm/Cd2GLopXQvz9KaSF0ID4Xny9zPLUWJ8sidraHxcXnuyKx9MEYuiDRrUp0T4ETGmT6Ohvwax76+Iq7ff5cEGiN8EGrKL7Z1LIahxTrT2XwOQ9asrGKlXbKHTGVhh4iLijIFhGLStyalp5Lv2nGylHcvfwcQOLqmkZOKv0Ah6QyYos96Gk2no0NH3bs7iY2tNi9IaG6WtQ6KSmB664z199+O9xxh7nc2irI8O23NyeOq6oE8Z08+5iSna4mWo/E8emn5us//jBJ9Npa0Z7k48bxyCPC4/bKK0XRzYYGIsedzBerN2OYu4nh8a+5qmYk0DVdoq2sEopLKOprPoet4q2I7hBky/vvp29HLohnDtbWiiJvkgSjRgmv8623hnnzYPZsIrrCO8278lLT/uzo+436aBFIEuV9zfhptVPprngtFI+/sizCdvweazFuQE4iu6uqeKTuGJ5vPNBY5YjZuSDLKJKKqstm16FG1JWZlD+HSfkxS5o+k0kgF7JFJEK+4qdYaSPsLsKV5+Ddll1YEBqC87d8kj0hEkhqr4RDtZDUuZLo0ShqbCJAcZD4RcnS362ANr4ZfYbguC5/njWv20r0TRFZfcumT5+e1cGz3R5g2bJlnHDCCYwaNQo1zczyzJkzOfXUU5k1axajR49m6tSp7L///sybN4+CAqHS2GGHHQilqXLw3nvvdeoVN3HiRK677jrCMXL0559/Zptttsm4fTZIGAtbUjp3yp/DLITya7/9YNEisX7b+ISgpdiCQ9ZSf8ix5YsugsV/TOD59jG8N+IClof7U6S0c94bZ9OvdSFDXdUsD/fDK4c4tjT2ucwwD2NYRYRCkJeoxh48GPpXRFmzMPHU2/t+Zzvf/JRrXRHuy+dt27F/4bcpJLoVf5u6E7VBqzIsKQUn9vlPLn+DQa5aPlg2Dum5RCX66tWxfyyqcA2Jv737l+5xg9EoRKP8FtiMSflzEj3eNQ1ks1Pw++9C2V385UewvBPCIk2c+0/lDQQ1N6ct+5ex7uY1ZzJ12PV81r6dsW5BaAhfzI6yKAgnhSVa1BKqI2VsWVePx5NqQr56tSDR29pi9c40VfjmhCMweBDkFxge54Do5Fg6P3/dbg7Pe3cgTrJb4SzJh3POEWlygQDy8LGwNHZrchgM1lZrBoEOQgjRFYke9YeNoOaRLARIDzvMX39t9AOoq8u8Xdif+HvTNeEp12vjlFCIS/s+R0h3cVv16QCoag8Y/JUrU45vY9NHb8TuTQIb2kA87t8VR3Ia1j//KYj0558XKvVMsFbURtTUePrp2IKuwaJGiEagTyblrS4G4g4HFBQKEnX58q7bX1CQkFqdFukKV+eIH8acyvxgJbdV/5W5wWFiZWGhUKAniReKlTZh3QE8mXce5355Ih+3Sbzyiridhx2W4riSuL8nKNKcVRUW/CHY84EDmTpVAouiC+CwRfegITHKvYK/9fkvc4PDIRiCpUt5e0Epb9MJgV5cAv37CS+dWEdysLsWZJkzXtqPL0/XwCkamjGe5uCrCtAREf0hnzuSGPQ6ixtr1hCobgXKkNBx5ztBlpk2PCYlO+ZkYMvM+/cQkQ6zn+B0y+hJdi7JsJLobqflOxIOZ1l4xtIGy9x7fqHMfoXfIQFjK8cDwzPtlhbhSCzeSxJFhToX9n1RLI8fCUzMqX02Nh7YsbubsJXomXHDDfDDD6nrZ8wQcT0+OX/xxfDzz2Iweeed8PrrcOutMHIkvPBCIvmaZEXC9OmJda50PXVwFStgydtvw42xzKjTTxdiPusk7YIFZgflmmtEQL7/fl5athMP1B5Hvhzg3REX4FOCprothnbVy/9aduMn/2ia1QL0fgWgOBJsxq28fUR3iLT0tYXaWvjkk8R1ui4mEABiTgcA/23am3/XCEvbJaGBYmVpKWVl5hhPcVrswLoz7tZ1QuF4zIiR6MlkcHLHZtUqXmw8M2GVyx07r6IIT3kdovGxZ2uSmBMECVHYMxL934NiQoMzzgD3kYa4M5pmzBv0m7Ha45XYs2wJY1d+JDILd3yGXGp96eGIIVpzOOXE+5bl80WKRnDJUVxEodRJXYIn+gY2zrCRM7Ii0TVNY/r06YwZM4YhQ4Ywb948AMamM2HMEe3t7Tz33HOsWrWKqVOnprx/xx13cNBBBzF69GgATj75ZC677DKeffZZ/hFLLfr+++9zOndlZSX3338/N910EyUlJUycOJHB66KIV2wwd33VZC7v9yynvXMODBiA3y8mX8H87bYGnLSreWyXN5/BBc2pP+TYsjWOHLn4LqPgAgU+GizFSwOamxcb9+fE0g8TDvNC4wHiRXV1bAZa7N/YCP/+N2nJBRmdRcFBDHevRpbM9/+2/CpqoyV81LojB45YCBmePbUtbsAygFZVQz0NOqgqRxV/wuQ+b3Dk4jtZ0TCU/KdiZHE0pgTP86b4ZT3fcBCtmWa3rQiFYOkS0HV+CYzkv017JaqdVTWBRIdYbJyXhkCXLJ2LNPdquK8WKRphQt48ZvnF76VRLUTXLYXPYrjklQnoFRBtOISXm/ajVfVx3acOitKMl668UvwZaGgwFfINDYJEt9rOqCosMb8sDqdE4ah+4PanDIzLB7hEUHznHYhEUG560XgvFxL9na+KE5ZT7HvSINRmfh4eh+U6eqhEjxPoXSFZiY6uEwr1IokeDnNIsSDH7qo5haiumL502ULXzcKucdgk+p8CvRG7NwlsaCR68qRXMoke+z3PbhzCG9fDUUfB+DSemaHWEJ+37sAI9yqGu1fz9MN+MaD1+US8j8aec3VdKMtXrRIxIYmUB9gt/+eESdLDBv/MVwPH0tBW3jmRno2ZZmkpNLdYKlxZMHQokgRjvct4tvJ6lsqbMfi1eznr2v78PqMams2J4jPL3+Ld9t2Nvsmi5nKQJAoL4eyzxZi+q2wjBZU7Bj5IgeLnkbqj+bV1BPjywZdKvGoxccCC0BAeqD2eyX1eB/S0yvgU9K3g4IMl2v67gC+WDub4ko+QYp/Xlts4OP9iUQPF4RC3Jy1yUKLr4QhazHol3x2lOlTCCzUnEdacbPuZm/23SrNTWxuccAJB/WoAPHIYyeno9PwfPrGCT94LcvZNQxixhYeeQsRscT6XR0Y1SPT04+DNCus4o+w3grqbMeX1EP9IMmYado2opdtQVCJz68BYx36XK4DsbAOMZkgSLkuR0p60z8bGAzt2dxMbohXb2oauC1uUUAh23lkM/vr2FYR3OhV4HOkI9Diuv15YxmmaINBBDHQ1TRDoAAsXCrX39tuLiUW/Hw44IPE4V18tnvP77itS6s85B5qSxFl33glffhkrtBbDM8+Ifshf/2quW7rUfD1/vugHvfcecwLCd7Nd8zI/WMm2efOJouCUVJaF+vNC44G80byH2K+oiLwSF7g98UUDAwta2dH3G04pSqmjpVs1zTpFe7u4pq23FtfdTfy75mTRZygpFm0oLgZZSZgMt5Lo3RJDR6OE4hn1soTHA41qEYs7xhHRHQxdHmXgSAuJruvoq6uMPkocxvyxLCPHrFzjP7EFKzw8u/pcfHKA3Qt+Yuf8X7o3oO+i3QYcDnA6DRJd11MF9NbJb0+eTEmhSol3WWxFbrFRC5ttcDilHinRE8bWbjdOl3l/IzaJvskgKxL9sssuIxKJ8NRTT3Hsscdy1FFHsccee/DZZ5+ttQbFrVNWWbyYrZgxYwbXXHONsSzLMttttx3Tp083SPSeoG/fvtx0000AHHrooRxyyCE9Ot6cOeK35HJZ+rwxJfq7LbtwfsUrRsKotYOvKOKZevKMv9KuOXFIUQ4r+4rmcB7FjiTiOQlBq0VKmoFgc7QgdaUVDQ1AfwAefjhGHCd5QT9b+S+eqD+c45eKIHt62TucUf4WeXKI2qjwWJsXrOQAZWlGEp3kIktWEl3TQNeNh6hXDoGmEwhAc4MqgrQaTU1vB3F+uRsdqvp6gzR5qv6w1PdVFaxcfEtzWk9VQIy4q9eID9mfXGUMWsqGU1zzB3mySRgMd61GkuCxIbdyzgrhLeOSIoRVHXR4puEQQxl/45MD8P2vs4vRheLcSrKEI2K9pYNwSul7PNcozEBKlVZQFAoKJfEFTSJU88pj30yXC1wuJCXLGfEkNDcn7tMdAaLVr9Tt1Dh3xeWsCPcj76l+TOvBzz2p1EBGhINJ36MeFhzLGpaBsujIKAaxkTWamrhl0XH8ERxKvuLn7kH34bVJ9D8FeiN2bxLYkAbi4TBceikQK+oZHsDAxva07iJnLb8G3tF4913ZsCZtaRGhvL0dPvlsLM+v3geAE0o/hMZl5jmyfaClUSH9MOZUJEkUAz1pqeg/TTl8NVfeLPH8s6U8dIuSceZyv8LvqI6UMydmI3Nq2btUR8r4qHXH1I2jKsgSRxZ+ym4FP9Gq5nNd1TngdLLbAT5YUQnLliFJMLxPGwwdwDHHwu+ziqC5ieNKPmaEeyUHFH3Lp+FdIBaOO8KJk+7dsuuqqmKvwuX84h/Jr3ELnDVVXe62LNwfpxRNmFC3YrRnOQ3RIuqjxbiLvJQMULjhBtDWvMEKaTVDXWtANSfyTz1V/Ol65nFeR9TNuUv/hY7E+Of6ckk3yonIoSCfjj4HTZcJbb8rK9RJvNS4PQDSXDf7p9vps88ItoYNVZ3XrYmbmYFEDzf7ufoiP2gas+bWMeOPnotWIoEocRGI06MQjtdy0fW0P+/RRdWMrvgvAFVl2zH1t4OJ6gpb/6iz7YGp23erDZbPwemz/GJz6DxE4iq8ZBK9p8SPjY0CduxOj4cffpiHH37YzFjfkGL32saSJWLCXJbhllvEun//W/w/f75QdU+aJNLZo7FiU/Eg9uKL6Y8ZR5zQTiZBkzmYSy4R/w8alPpeHFdeCXvvLUiDZAI9DosS28B//iMU6W++KdKEKyoS33/iCVpVH0Nd1caqVs3HcUtvY0loICeVfsCrTXubmeRDh0KeD+tUv5VE33PwIvasm5a+fbnguuvEJENxcUZVu67Dc40H8037eC7s+6JZRLNfX3AlqrKstvGKI0s7l2CQUPw+yKKw6I+Nw7hyhZik+OcnOiePtGzf1IQUCvJM5Q2cvux6AI4tmc7kyeOMYygxHiZO2VTVOfkw1j/r52xgR9+vaI1tdEO6mBlpSXSzeHuygD4YMO+FJ09KSi/ILTYKG5hYE5wSDYE8zl58J6qusOPzA7hyrywOZp3kdjpxuM1JLluJvukgKxJ9u+2244QTTgCENcqPP/6Iq7N817WMhoYGWlpa6JdEnPbr148fOptpTcK7777L//73PxYvXsxDDz2UQL5PnjyZv/zlL0iSxMUXX0xJJ0U3QqFQgm1Ma2xwqWkamqaxaBGccYZlNBZVYc0aaDeDVVBzosV8qsRvTmyvKDBnjk5VRyEQ4PuOLfh+/njQNL4efQYuWTxcvpvj5cY7Yj/Ibv4uqyLlLA31Z6inBimmindJkYSiDpqm8fbb8NZbsfan+LjrfNW+tbH0TMMhfNo2gYm+3xO2iious2F67J94cE/u9Oi6uW2sY6TFylF5pBBoGqqqs/TnRlNdXV0t1OLJyjRNzXxDIlGxf1edLlUco6JCWJEYqWgWnFj6AS82HiDOl6nTAPyubMkk/mByn9f5qn1rZEnjkn7PoQPb5M1HRkdDEp+BpgF6irVMR0cnH/DKVQnfKwCcDqEYsASUOIHukiLcNuhBNGU8+flaCmtwRPGnaO7JCfdIsggdolHxHe8Mmqah67qxXaAjcfvWVq3LjyDQav6+3E6VFe19qI6U4Wvzdnn+ztBQHYWV1eI7N3BQRmI6mGTngqbHrj3nU2eHQMCYB3NIKmHdSVQlt2tftoxFoUGGzcGhi+5h1yfKuWanTXjwsYGhJ9/ZnmB9x+4NFRviQNyoufD118a6x+uP5In6w+m3spF75muMGpOmgJOqgsNc/9BD8MYbsYXV4wAxwfpSYxL92QMF0QBnPdf0f8oIH6M9y/lk1N+R0CnY6u/ggCOOdvDQg0VQU4NLivDeiAvYZ+EjCce5feCDPFJ3DGM9Szmu9GN0HUGil5eLQWlsgOXSArw36XqK64S3XERX+K5jCyKHHMml1wCXWNKJvcLb/KCDoK7KiX7bfzm99G0ja27KmOlcPPM4AP5a+RmQzQgJiERoU/M4c/m12e0HXLrqAnbJny0WHI6EAeTpZe+w7wN/gZqFcOihaLHBv3zyiVT+dJFYsKr2YpCkzPayGjK/xzISi9Z073cvxbINFEkjr8iJy2cOF8KB9GRwxB9hlz+eNJZ1Z4wcyECi++csAk0ct2VVD5VsljZYSfQ4ARAvLJoCSybEcn0ID9QeAcDkn5UekOjxqJ1YUCwXEj0ctpDoeQ40XUJFRg+omez6bWxCsGN3ekyZMoUpU6bQ2tpKUVHRhpdFtrbQ2ipmSTvL2Hr3XfEXt3YbPBiefprWr+Yw619fMMZTzgBXJ9lgmpZqzxL39U5GJgI9hsCaZpwr13SbXGqO5lMQCKK8+CLce2/abX5/ZylnLXzQJJ6BV5v2MSZrX2g8QKRhuT1QVJiYGR5DQpaW15vyfmrDmgUp/sYbgvg/91zhzZ4Mv9/0ZO/EFuabjq14oFb0N+JCAwYMSCHQ46vjsJLo3RKvBYMEtdgxJaFEd3vMY6TE7phlYKliCvCaVUshdUVhR99sApqHPgOHACPwt5sx/JG6o3mk7mjOmibzt0ldNy8jOlGipyXRrXYueQpYrYNzzNJSw+a9URwSuuJgRVjwjQ3N2RUZr2r08HrtsbilMNv85mHLYo37B9+NU4pSvu/pZGvrZmPDRNZ2Lo888gjnnnsuBx10ELNmzaKmu74IawH+WKc+uXCK2+023usODj74YA4++OC072VjBXPbbbdxww03pKyvb2gg7Hbz738XEImYv3qlphqpLVHFVRUsZNFBN9J+wYU4B/chEhEjpk8/hf32a0XTNKR45yCmzn6i9hB2ypuNWwpTU9tBVZV4+Ci6ZdsYdC113fstO/F+y05cOegZDvOKQDnMuZL5IUGuORSVH39s4Prri419pEgUxXKcs5ZdjZ503GWhviwL9cVKXneoCpFIFDQVx/IVoGuoffui+/JRotGEtqmRCHrMPkUKhVB0nbeaduWisqfwEEDXNKKRKMvXKInXJMuJliUAUZVoJM2ISVVxLF2asbhrwqbhMLrLzdFHt/PAXc6E64+jOeJJuQ9WTPD+zjHFH7LZgBKiyyNspizi1aEX4JSi9JGajLRfr+SnXRPKbz0aRY1EcViOq0Ui6K1tSMEAWmFRYuqeruFoS1UHEgqhNzalfP575M/kmorHyFcCtAdGEg43oGl6wnYHl3xBbcNRCfsFAh3GtXa0B6jtoqicpmm0tLSg6zqyLNPaHETXzeC8pqqZ2trOg13Vyjr0mEeZUw6DHkXXdSIRtcvzd4Y1Hy9DbxMZGVptLTU1Ulr1YUtTR8Lnq6tRamrqUXP2VMkSVXXUtw3AK4foUN2ATigUzenaXQsX0hotMa6nMZpPTW24R/fRRnZoSbbj6CWs79i9oWJDG4h/8onIoD7kEPjnANNP9In6wwGojpRy4gk69z8ksrkToGoJPbp8yzio08mBbl5zsl3LNf2f4vDiz1O2K1RimVg7CqVSURHceIPO46fVcnzpRxQ72tm+dDEzw1tBezsFsp8KZxP/GvC4cQxJgru2eYlLgzeBy834ps85q/xNJj10IjyuQuzWOCWVG9/cCraP5T8PGSLS/0CkuSO6B3+d7ITP58Mf5rXudmgJN6x6DF2X2GH/1Hoj3cHHrV1Luke5V7AgZDm+2w2hEFWRPlzU9wUGX3YiK/43m3s/E/d2C+8ioSqM+YsadMCuu4qU+XBYKA6zQIKarZs8rmQlbfLycOaZfdlIKP1BPv42P2H5pPG/AluALHPrmr/SpBZQ8PEwrrtMvJ9AMGOZQOoBrHVMXF4FpQslupWcUvLMsUU0knuMH+GtYpIvQlR2kZ9nyc3P4fkSjsbukSTh8irsOP8ZNCTGPeVg6lk5N9HGRgI7dncTG8AEeLcRjQoP8QED0vuvWfHTT11anvk1N6837YV26yry5B2pXlpG29+W88ZH/dGazgfg0SG3McE3L/0B9tgD8vP5vmNz3m3Zhd3zf2K7h56nLjqYPDlISHexODSI3fJ/wi0L3+gOzcMv/lHcXn06sqTxl6IvAXjywDyGRo/kZe87JgmaBE2XkND5sn0bLln1T4a61vDSPVfjkGBNpIzrq87ht8Bm7FHwI7cMeIR7VxyVQKADzOzYPPGg5eUWO9hU9O9vWbDK0uPQdWFt8/HH6ZXMgQA8+KB4/dNPZg2aLrw932vZmRcb92dzzxKxorhEWMtJsrCxQXwN+vUThwVRgzQO2WVekxrt5DuuafDBB+D3E467EcSU6Aki7VDSMWLPkhKHOYldP94iKJAtdmR7HQ/sgr8jtR3WrPGcEI1yZ/WptKl5lHy0BRed6MRBIoluRYncwmll7xLUXGyz3V+p/aGYWS07E9UVxvyhM6oypyYYcDglFJfJs3S3qGscq5rzeaZBOFmc8ZODCQNkYXsDUJ6Gr7GxUSIrEn2//fbjE0vBhAkTJvDYY4+t9UZlQl7MpCm5aGgoFDLe601ceeWVXHTRRcZya2srgwcPprysjOKKCgoKpERlUFt7ygjhoYZThULoUhejd3Xj1DRwiwdgYWEJstSSuI8k8UzTkTzTdCQANzrbcDpjH6MkpxxfklPXxXH7mjNZWjSQS/o9jy45kGLb6YqbqqpSnE7LfhEl4TgRXF0Odvo5G9Bd+TjDDmgNGES3Y80aMaWok3BMh6II9TRAWLQ7jJsHGk8nzxFBCoHT6cDlVghbTy5Laa5Rx7l6lSiSWmHJjWpuwqqGl9DRkzxv/lL0Bf9r2Q2HLHPAIQpbffAYjhWHpr2P77XtkfY+9HU08uaIi01Pr1EnIs0SX4YhzubYVuaXw6eE6dB9sTaB7HQknE9RVVGkRddQGhrEAHtgrBCJlqokj6+X2lpT3nMpOsWeKOAkv6iIYcPKkJXqhO2GlgUpSkqpixYXGN8Rl9NDRXLKXcrpNSRJok+fPsiyjKYtNfYH8Hnyqajo/BFU7woiSWKCzJcn45J1cQzJ2eX5O0Pt8sVGW5RQkNLSoWlVfIriTWizJEmUlJSnZBvG0d4OF1wgsXIl3HefzrhxOTcRgBWBYk5fdXvs3GKdrOR47T4fft2XcD3g6tF9tJEd1peCbH3H7o0G2Q7Ef/xR+IkeeqhgvnNEbS08+qiotwVCTHbOOWG8QIea5BOtqlx9tcJn080ev1OKEtHUhMFXfj4QDEBHx1qxfrhn8L1Ma9yHO2tOZZR7BYcVpRLoAOy+O0ycCMOGGasOOszJQeOuMhRC12z7Hicu2YlIRxPHlKQvhLfHWSO4yAWhYCGnegIo0T1gzz3hww9Fenscwy2KngsuEH2LZctg8uTEA26+uVncC5DOmczBCy8R92by2dncCgNeObEvWqq00qgK8nt73+9sn/c7rZovkUSPCQUOKfpK1KY54nwCegRt7stUuqro72wQBVmTIUlwxBE5tVO2ZCh0+RVva6PqrR/weJrNdXl5uHxmgAwH0w8oFy1JJMVHVsa+d7LMNx3jqY6UUb7cJB3y9TYm5q3mB78IlO3t6S89Gwg7FwGn18Fm7lVs7/sdpU8ZLtfQlO2D7VHQXLikCA6fhUQP5z6hduKAzzgxshzy81GLr+OAhQ+g6TKbTy3k3pOyO5ZBossSTo+CQ4qKjDTbzeVPATt2dxMbU2HRt98Ws+VOpyjemcDwJiHNA7sxWsjKcF+29C6iPlrMQYvuT93v01LQTPL9qtVT+GhUogfmktBAlof7sas+m+dW7M3DdccA8H7LJM4ofzvF5vSU0vf4sHUnw7LVivhEPz6VZQ2F/EO7jIeG3MmS0EC+Ck3kjbqdcUpRorqDqkh5wr5LwwOY2bE5k/LncGf1afzkHwOIbLQEW7d0WecgYmMnBDokFd22VhmNY/58eO+9zAf49lvhb7tsmVA5pkFEF/7sYNq3xNXn84OV0K8/lJSIP0Wop6+4QnQfa2oEhz9qVOK8isNjIdE7swG59VZ4800kIKgLG8B4YVGX26JET7YojXmbeuUQhUNLaZWLWKVY+pxWwV7su5hOs2q1V8kJ0SiftE2gPlpM37nFXKQoKUp0K/o5Gziv4h2xsN+ZfD29guuqRJblOd+5GZXWb66LJljubwqJnqWFrUFTShIeb1KaYLb+6jY2WGRFovfp04fjjjsuYd2OO6bxrVxHKCsro6ioiOrq6oT11dXVDB/e+6kRbrc7RRUPwqddluWEmgSAYEeTfofG4CoUYs2n80H1iUGh24Oudy3JqWlwYRifp9u8i9/9K037cXHfF1BNvRPnHLgSVS1P2jL7B6SuSxR7w9AupXYE0qXb6GBchFX9q0uGJzpIhKNJaTWZRoWBgPhrboZ8HwwYgEtRObHsHV5p2pf+znqiumKk68QRjc946+Bas4LtlrzGQUVlKQVAO8MFfV8ygimAFFPFZcJZ5W8yP1jJ6817GteZgObmRPV8a6tQ2jmcWaubVN1hHF1yOOjfX+aZo9/h6Vd8fNG+DYVKB8WFupiAscDhVJDRkSUNhyzU5V1BkiTj9xBKGnhrwSiy3DmpGLakbHnd4twAqiZ16/zpoGmwrLUM4go1RUFV5bSCgnGltfy9zy/8X11Mla/rgEymU7/6Kvz6q/gJt7RIGbfrLoJpOitarteu60a2QxyRMDnfRxvZY33d6/UduzcaZKsUjReR+umnHpHo11+fWvvriznF7Kk52H3B44Z6GQA1SjRqFllZEhooVFqBAAvmuznxRIUX/zmTDx+rgGXBbmVdASKtuLJSPBQ6OgSzH8MdA4UC69jS6eyY/yv9nfXmnKu1bYMGwd13d3mqAQMl3nu2kMi191HkL4PqSKJn+lFHIR1/HCd6QMRCy3d3880TB7HW0XFJCVx1VfqTbpZUEDwvz6zkngsmTWLA9LqEVa9tdjm/+EfikiPsMKYVVq4kqiv82DGWJeGBBDS3mPQHtvf9JnaqqMB70pGc8lRM/TV4cM/l2Emwqtm0ztRswLPHv8+Dn21BgZTPPkV/pUDxs3P9UIaNsCrR0x/j498SyaCGQCzeyDJyrA+ZYJ3W0cFgV41Bos/+PsSu+/SsancCiZ7n4PTydzidd2DLLaEi1bLngVmTmPbHmQBcOmK+sb5HvqXxSSunE0mRqY8WA9Diz941NkGJnudAkUKxIqmbqH2FjQTYsbub2JjsXG67TfwficArr8A//5l52ySLkLDm4Pglt9KoFnJFv2djhqdpUJuYrdCoFiZk+rSqPo5fcisaEseUzODVpr2NbXUk3k8z3n2u8SAoKIR0mc9xLF8ODgezomPZcf5/YPRoaG+ESF3qtpa+w/krL8l8TBCT47IMQdVcLisTJHB5HzbfHH7/XTi1PPussEWfMUMkb40YAdttZx7qh6YR3LXkNiK6g5NL3+eokk+EH3tX+M9/Mr41rXEf7q89gb7OBrb3/Y5LivJi4/7CR6a8D0gwaReFb74BPIKkHjcOjj5a7B9z4EmB4jXjrhrJMFG0aBGfPbeSS1ZNBeCBAbdw48AnCB16LB7PZJxuc9yRErubmzl3xeVoukxrWT7keamtFTqF4cNJtGKLTVT5/an9k+TxfdaIRonGss4VRQgjHY64FXAaKzarmNblSvQcz5Ap12UTkkh02WkeM9s6cCaJLgsbGishaNcz2WSQFYluxYwZM9h777273nAtY6+99mJWvHIWoOs6P/30E1dffXWvt6UrdFYsOw5rilL8AcKSJWIwSmGXHYOH36uE4k420HXOLn/TnCVOgw7Ny+LQIGN5dYMHXzLHnUMHpSZaysw1UfEtSxrIj3SvZGHILCLlkwPstlMz7/8SJ/kSz1cg+2Pr0rQjTqK73eB0pXqDq1FRZc3no7x5Mf8YPo1/VIiiIp+0TuCy1ecnbP5+a8zYq6YaZ40I/NWRMrrCiaUfUqy0kS/72bcgyRbIWikkDbbKW8Ct1TGf03SkR7JdDcQ8cNOT6IVKB0cXz+DphkNT3jOKdQAoCk4nbDGomT0K5rM0PIBTSt9Dykv1jOtXEmLm2NPEwln3A4NStukMwWBi4FWDXQeSMYPaebbyZoKaiz4jBzFrya5Aak3abNDaGh+Yivu8/2aLkKT06fyjimsZVf4WRxZ/Qlh3Im+5OaX90vv2AaxYHIGgypIlboqKek6EBNpTOwNqjoVF1VBUkDgW9ERtZ2PjxPqK3RsFslGzJXuIqmr3gn4aGAR6NCKOIclc/eYEHi+IEb9uj9krDwTw+sJw1b9YFBxkFPempgZq62ipC8GCc1kyb2p2jZAlcW7FCx4vw/u0s2ZeE4OdNexeEMszzstjCJbBeV6eGLXG29ZZRqB14ry0lLxiFzx4s1hetkwUFsvPh5dfTvKiSYJVbg/dJ5wtyvi1giuuYKtvEuNrvuxn14LZMHOmGHy++SaOZ57hGf5FWHcS1F087v0nw2q+Y4xnuSigJkkis+zhhwWhcswxa7edJNqUZByIA4TDPPjZFoAo3PZG854AFDc0MMqqRA+lxo32dljT4iVerfW2gQ+zzeBYwVVZNsiehNjd0cEOvt+EeACYN6u95yR60Lw+p8chPgdNy/jbDobM709evkkYRMM9sIeIj/idzuyyAJKh64mFRfMcKASA9F1CG5s27NjdCTYmJbrbbVq0/PSTKEy51VbCVsU6Kfzrr0JhbMHPgdFGttPt1ad1ehqHpJq8ArDngsdo17zcOfABblpzFlpMTmUl0ONIVosD4lmanLLbfwA0NiSSmvHnnyQL9XhxMdTXp45VPR7xULSSiuV9oL6OrbwL2b/wW+6sOVWsLypOHNt7PFBcQsWoEt58U3Dqc+aIUBq3Lt9vP5gwQbi3WLtmQXcRS0JiTN6sxlKf3n8/9XqTYJ2ECGsOPmidxKpwBbsX/GS0c0W4nynMKymBvqZI79prhYtPXGdw7rldnhJPvoNTSt9DkTQqx0wERqVu9NNPXFv1N2Px6cYjeKLodqS+YZC7UKI3NTHbv4OowdbXvEmGWD9NPRN/ILXPZY2jOSEaNQSMcb7ZoXRCondWuDPH2F3qamfa8CuJ6gq+cx5HWWG1c8nuWFYlutsNusPJ9+1bEEXBt6iAbTrd28bGgpxJ9OXLl6/NdnQbV1xxBfvssw8LFixg1KhRvPDCCyiKwmmndR5M1iVSipPFMG5c5toc6VDhaGJZOKbkWbUK/clv+XDIi+y/8MHMO3VJbutdKqg7tETC9O0f+rHX4KSNcpzl/7pqGAxB+LXGcGrZu5xf8QoRXWGn+WJmd4irBlSLrYTlfFWRPpxa9i6vNO1r+MInID4ykWRD5ZUWVVVUUZqwKk/uxGtO04j8/DsMgOXhTtLtYji3z6t45Awe312Q6B2q5TPoRmdwkLOWVWosNTnNZ/Pk0JtTC8jFkOBTZ0QrB4cWf8GhxbECKXlbpu5o7YXk0GFNDrLdIdHzlBCbe2Op+2UlRpEwXc/dPzUUwvjO7F3wA7fsvwy8GYrKxTp3hl+cqwUy8WS6TuSNd2DFaOhTQWlpmk5olkguxjrSvZLy8oE5HaujI3VdxK4S/qfD+ordGwW6G+f8fjgqsWYEixcnELxPPinqfP3zPJXSWR8Jv+7Nk3w8rWhtEUWeXC4YvhloGs83iELQFOSL9wHa2vE2LgftKy5bfWdS+zVqGp1MaMySQAdjsHTEEXDwwbB120rCF1yKQ1JFMc5rroHDD4e99hIzkSBGWtbRTXdt9UoT4zCVlaKzpChdT0RsvbXYv7ERzsrCFHptk+gDBsDHH3PT3v/m34sO46jiT4yipcbA8/DDYdddkfbfH7cUwX3wflw690UILzWPEccOO4i/dQA5z0zPVjvz+p41i70KFvFJ24SE1fmFMq58ixI9zeRr3ezVuELthGPDin0Lv4eTpsQaIBux26pE19o66OMwC7K31fiBrgULnaHM3c7+hd8R0R0MH7yl+D51QqKH4l02ScaXZ6nRk6UHagLipJDDYajwNaTsSfRolLAWI60kCZfHvI8bE2doY+3Ajt2dYGPyRK+oEJ0DgLlzxd977wmF+j33iPoXS5bAlVem7DrQmUbRnQFRXeHQoi94u2U3ANpjY/1k4VgKJCl9X8hquRpHYQE4FFi5Ms32sTjocELlMFixPPHBJUlC2d5oESQUFEA4zM7uXzi8+DO+at+abzrGM3mKg8k7r2HmmY9x7soryBtSzp33C54l7pKYzl4+uasB4C0z+ykt8SKaXdTV+8U/kn+svIwtPIvZt/B7U/QGplgtvwD6VkBdvbjO2Lj/jDPguOPE/MjRR4tLHDKkazt8AHe+kwv6viwWNi8H9kzd6LffCGhbGIs/B8ai6jKOmOLd5TGJ8GQSPVzfKgh0YPgw2P0A0U017puicN6KS1kVqSDvlXJeuEqnI5TaR+vCtr9rWJTocVpiVP4aWoO/4Sjw4nQmZhJGgiroCg6XgiRJKJb6Kp0KBTqBQ48w3C0KrTJIIrzGcswsD2mQ6LIg0XE4+MdKUQxmiw+cPHNNTk20sYEhZxK9s2KKPUE4HGa//fajOZbCdPzxxzN48GBeffVVALbffnueffZZTjzxRLxeL7Is8+GHH1LQUyPFHiClOFkMBxwA993X/ePkyUEGOutYHREP3ote24lTyxp71jhdN46XCe1qkuq4sZFPXlWhtMxkKXP9vDUd2tqETCmGYkW8XhoyycB5wUomb9fA+78NTjnfCPdKs1iZrmdOT5fltFW5O0OnJDrwdstuXDfgSXbNn82bzbt3uq1LiggFneVaDaSL5BYY1wcJEw6Z8MCQu3hq6wd5d+5wCKRew2+BzXijeQ9j+cTSD0VqGSSq5OOERbL3ULrq5dZtciHRw+bg+YvRZ+Pa5ymgC6LZOtvsdhsp4eiiz5yL8DMUwvgOueVw55W8k9/rrKPe1ESoMfY51tXilgqBnnlgB/zm7+CfFS9xctn7cOyZwBaZd8qA9o7UGYdIbkXMbWzEWFexe5NAdwfi77yT+pw/8UR46SUYOZLPPxce5wB9lv7IlLnXEVa8eD58S6iTkjAgv5WqebHOezgsjq1p/BjzBsXrFZ6fahT8HXjdQdpVb4oVWbdQXs6zF81BfvxRTll2o7E6zxXlqFOErTgA9WNxyRaCPD7iKy01SfSiIlGrwzhIN0l0jyd1XXfrBeTlwVNPwYIFgmzoLsp7PqmZgpISDvz+Xxzw8itI97+WfpuyMrjzTpg1S6jtrb7mnXnhrkVIXo9J5MZJ9EAAHn9ctO+kk8T37rbbGOOZmEqiFyk4fZ2T6MO+e4lvxrxMU7QAnzMMN96EURRElg0LOevj58vZBVy8/Dpjua0u0WM+F4wtq+WWgbEitTs9AG8ogtTOqEQ3PcfzveY2PSksevWC05jfOgBHtZvnVBlZ0tB0pTtdu0REItw56AFCupPINjtQUHKuUSg114w0Gxsv7NjdCTamWaXOilFedJFgXdN5eyC8oLNBnEDvNhRFjGNbWtK/50hSostyZj9y2TJA83hg5EjKFn1PmdJCuaOZb6KToKLUJNHzfGK7Af3ZfICMa02U+wf/m2DpALyXvg1MYvv/FvN6SyH5oz1dDaszYvgYM5YtDCYqBt9u3o1l4f6M8SyjVc1na+8fPF5/pBETf/CPM+zHGDoUqqtFfKmsFBmDYNYri720Ks6dziyd/6zflVCG+DhnDjPHvM/28581VrWo+ZTFSXSLEj05douJa4FBw5xMmZJ0bFlmTaScleG+5LfmQTBIQE3tq60VJTqJJPrpQz/l9Lw6YV3b5y8Jm7+2ZFvunn8lsiJxy8fQ321xdchgN9clrM8QRUnKIsvSziVi2rC53SC5nEZmSCRix+5NBTmT6NJa9myMw+Vy8dlnn3W6zRFHHMERORZY6k2Ul8Nf/gL/+1/391GSqllPbTg4YfmAwm/5oHUnc0VXnapudLqSleiEQsIPtbZWDPKKS3In0QN+WGU+pI8r+ZitvaK4V3Ll7hH9LKSE5XzHl35kpJ0ZEuR0kDtXoo9yr+Cs8jcT1mWqHh7H9r7fCWlOPm7dPuM2g101HFb0uVChbb21WbXbilgV7kzIVyyz4Jra5f0e4qrhhsN+5rJzO6g/+0qOIlGReOOaRIXeucM/wCVFKFLa2SV/tvlGJhI9HRnSQ0+vYFgElRKljTw5BJFA1ztZSWyPJ+H3kat7QkmRxnX9nySsOxnsqgZ/5p6Y3w8R1YdLiuKWwsidkWzRqDGjD+D++Tvon/2fwuMAAQAASURBVGUHNs354zCK2OX4W0xLotvWbH86rKvYvUmguyR6pom3O+6AJ5/krbfMVS+/4eZL161UR8r4v4c+ZWzDV8h77g6HHWYcq3Lue1RhkSU1NIAsG7FZdsg8c/ArLJtVT1BzIaFz5erEImGAUD7VdaJUGzCAE/5WzOZHjGL1U4mpKZ+d/BTyBbeZK5JJ57jFysiRwn4FxMDR6mWejhxPh3RVnLPB4MHiLxtIkjCff+EFQVKsLTidSAfsDw89KILSeeelbrPXXuIPEj3kh6S3EVvr8HpNIjcSy+Z76il47jnx/siRItisWZOWpMkvcSDneVAIoiKn/frPnRPl7erTOLToC8a9/0DiBIEsI8fIX+tYNNiWGIDKvJ2rAbsFa+NcLp6rP5B3aieiVRdw8x/CotcKc7CbrETPvQlrgiUsD/cDyY3DVR+7diV7sWwkgiJp5EkhyFfBIRt91qhNov/pYMfuTrAxTTDEJ6EzIQOBDnDN6r9nfC9fDhhq86xRUgK+fPC4KaWRRguHfkrpexxTMp1D1zyaqkRH2MAdV/IxxUobLzYegF/zcGHfF2l192GfaRdy6aXCKh1J5qpDf2f3eY8S1Fxc7BlNaNwQZvv7ifhT0Zdtt4UxY2Qm7n0YnP02ktuN91GLhea4cfQ0apYOLaBUqaVRLTSy/3Ud3m7ZnZvqzhFx3OsV8XnlSjONNy5kiMPrhWHDQYKRIyUWLhSrzz8fDjpI1Db/17962NiuSPSaGli1ClkSxcrfadkFgIdqj2X7eZUcSKISPdm7vK0hFi8lmYKSNJSgoiTUIsPvNzkjy/0I9nD+W49YlOjx7mG8n5hmoBon7TVJweUi0c4l1wnwTkj0bOfojG6IbHqiO1CJoth1RTch5Eyi2+gesiGpJHSqulCNJxDoIJ78mgrRDL/wpI7FaM9y/ggONZZl9BSf5ATUNwgvslAWktUMA/khrmou7fec0SyrV9s/+kxDC++R0u4r+z1DqUN0OKYNv5JjF9+RmZCOKdHPq3iFR2qPYe/CmfR3NvBsw8GMcK/ihWHXpNh/lDnSzLbHUOlaw/X9n8AtR7hpwKNctOpC472nht7EnMBIDi76ymgfkFZlCHSp0CtTWhjnWcrcYCzlvDtP2bfewjd3Lj43fDP6DJ5vPIhH6kSVkvMrXmG4exVP1x/GMSXT8fQt4h8d01KPkQWJHtJdPFB9CjoSQz/pw3H7dd1EKyYVzaVRk8iXYwPlQNck+txFLpa17EyJ0srmeoGpREfPOXuzgDbTtgbAv13GbR/9cSIvLjgJENYvm7v8HNyQVOk9DlUlZCHRT71uKKdFTK4sF1ifHy4ptrA2SXQ7mNuwkT0y9ahjP9g1a+IrdEK6kyWxrKvTbh9DiTKQLV9axN17dyDl+6Cx0VDgGAj42bvgB2YwEYALzodxqxXGLfya3wKbcfqy69Ofv6w8bez1yiECBX2hqIhvvoGLzyykr7MRtxQhpDs5vPjzBMsPA9tuKzxb8/LM2HbxxdCvnxglnHQSfPutuX13yfHuqs7XNv7yF/G3ttGnDzz0ECxd2vUD/+qr4fLLhXlrUsHAdQav1yRy6xuFX4+lcCxffGF8Jv2c9Sm7+4qc4PGwc77IYhtUUQIkWr5N/uBIgh1R3m3ZhS8rKhIPIMtIUmph0UCbGYCu6f8Uh++7A1gnk3JBEoneqBaJmj+6K23GvkGiy1ICid6TwqJRTY4fElmRUCQtlj2XJQlq7QA4naAoFjsXm1C1YcPAxmTn0hWJHsPvgeE8Xn8EBxR+yz6F3/NbYATT29IIutxu9nF9ye2DHgLgyu0+4uPnqwHY0rsIGZ1fAiONzY8pmcGZ5W8S0ETMP2LxXWIMWFDAFlvADcc2cNQx5vPl6JIZDHDVM75gGXMcpgXZ+RWv8AA3gENhB99v7FbwM38t/x8dmoeieHb18Au5/nrRbRgzBna9/kg47Q08us7DUwdDOdx5ZynTppXSvz/83//Fh6VbimKfTmeXdqhZo6iIPs4/aFQLaYgWo+kSzzUexIO1x0GfUigrjWXhx+xm4iR6aangWxoaoLCIgw+RmTdPcOn33AM//yw+2sMPF3TE66+vhba6XGi6JPgSfzQ1t9lSkb6wWIYYpfG/lt2Y+31fDgScHkuBzKTC4u2NsXjpUEhr6KAoluwnoKODiXlzKZD9+Av68uXqYehIhkguV2gWCxaHQ4q/EP93QqIjyXg84LAUT83VE72pw8lnTXvgkFQ2W+BgnFNBQkdHyi7e6nqKEh2HQ0yA692jd2xsHNjg7Fw2RmTyRP/pJ/jgg8z7Fch+hrmrmBMQxZdaNV8CsdwtaJrwYs30q0z6nKwE+s6Fv3FvvzuY5R/HsSXTmda0T+r+kTAsX5aW8BzsqmFluG/qPvn5gnxPsl25e9B9CcsnLr3ZeH186UfUhi2p2bF2OyRVBNGI8Kra0TuH79oyWFnElOhHFH/GsSXT8cohVF1mR9+vjPEsS+uf3dfZyLZ58/kpnjZvwdRh1wnFNEKRbsVWeQvZKm9h6gEzEfyZFHrFxdDcjCTBk0NvYnWkgmXh/lwavS/t5rcMeMQk7efONda75ChnlL/NCPdKloUHcPTY38mrXcYu+b+IDUonCI+9ZGRh56IqLuFLD2z/i5dsh/9XDH4BfBZ7om6YqE3/oYipVecA8FjbD5xY+gH7FX6HtP0EHI4cCYjYeR+uPYZ3W3YhWlXIo5fHKpEnwToen9E2kRl/eNiuOgOJHo0S0swuzopaTwJPkQsSxtDxgrA5Dhb657dxQcXLtGtenqoXRE/UHoj/6WDH7syQuvvbykSix56n/fsjVElpnnFNagFftG/Dz5+3UjzWh6tBpz5anLDNGM8yhriq461ixGgFJFHIOV2sAkQxckkS+cOrVye8df8dISY/LQa/BxwA5OfjkFSmDruOHzvGckDRt+A9OPWYN98sCn1OmmQS5OXlFs8XEp9HnaUGHXmkOarcPnNm10aLiRPFX1fYe2948UVxHwsL1327ALxezip/BQ2JMqmFlMD0yisAvNi4P/9rTs2eyi9zg9vNPYNjisCt9wQOMt7XddOuLSD5Ur8HsmwMxK1K9GW15mR9qdK6FoxVSSGejabo6SfegxEl1kSJfJ/OCPcqFEmlf3GaDkF3mxAj0Z2KSJcziqpmWxE9mUS33EfbzuXPBzt2d4INkUSvqYFvvhEFQ+OT0OFwtwREAKct+xcAX7dvxZzASF4tORtKmqHJMo4aMRKiEWprzIzaKefJrH5tKUNda7hhwGPMD1Zy6rIbAGEdekHFS7H6XYJxnVz+Bo87hOfIbbdB/6JhXDbsLu5cegyjPcsZEPNhv3XAQ7x32i4MuuthKhxNbOVdwMgHb8DvV9jlswHw8a84Bg+maOnShOsYPx4+/DBeKqRUpOfruhEn/vEP2HJLsV1C6LDWDFmbKCqiKGYrqyHRqvrYu+AH/q/uaKIuV6ItbHERBMXndfTZxWy+pcIN15Wy2WgHV1+dqAfYJw2F0mO43eww/xl0JMZNizL1qqT3Z882L2vbzcBSNsHdpyB2CTrfjD4DpxRFmnwnIPqSaBox52RQHOm7I7JsKNE1XYKODmErCrDNNuz1ymRaVR+hcM/ikRq2kOjdUaLHuwpynES32LmksZvrDla1FnJLtSjsfsJ0J+N2k7m0rxB+lu+4MzCyk70tiESIxIqkIkniMhwOnJL4HkWiduzeVJAziX5cbyloNgKk80T3+0UqT2eIK3PiSEtId4WWls6ntTrpdH3dugXbN8c8tDweIMMAJkPA/+/wy5gTGMmS0ECcUpQb1pwde0eKFSZJ3L7CYQb+ZEJbRqOm3hI9DRI9Kojp2JNeSj5owkEkfF6NfNlvFPhSJI2JvrmZ9wF29P2WlphwYD7UPXKYPQtm8VnbdsZDNQXDhpkp7yltyzBLGyPRQRDhw9xVDHWt4cajF3Ddzamqvv1v31P0cjJgt4Kf2Y2foWILsI6T07K+JBQWTUAaJbrsMrfRsjb3BCIRqiNlvNOyC6quMP6XPHbKUM8zjsZWB8QGjSXFOtsV/CzeGO3L/ekVY8bbtTxqoyUQcGe0mguneJfpmdO6VDXBzgVV625fuaumAnBnzam81bw7jldH8mAax4Cu0D+/jVPK3gNElkVEd5C34zbAiJ410sZGBTt2d4LukhRdkOhGfOvkAVC3tJ3J1wOhErDUBwFYEBzK/GClWJBlioqlBJ/NFJSWCcUUQGGRSLNdIUZTQ13VbDshn6v6QX09nHoqxvN+M/dqNosXUko30VtRIXKTO0NSCmxGTJkiBkXDhsHYsZ0fc1OHpQBtr8Dr5YzytzvdpCZSyj01J4HTBSOGYOSmA74SV+L3I4ns9ndY5FUOhdmzhbOdAVk2+m7Wn9jva0ziZ7x3IYR6Prky7acRPLngIZxSlKvmFJi2vHqan200SkgTvwWPU6W8ROXl4TGW4pBbgSTvl+5A04jEjulUtBjxHVOP56BEf6HhANo0H755ozhFUYSqHdvO5c8IO3Z3gg2RRP/HP0R20ldfwd13i3UWFfrC4GBebdoHjxxm1/yf2cK7GI8USiv4ejV6hPDcdidpkRUZcFBnmYgfNK6QqcPMbLVx3qV8MfpsPmzZic29SwSBftBBopgpcGrZu+QfdARDDiiJuXDlceyrx7LTp4vo17EYScyx0m+AzBlnO8CzoyDCL7ifneLJ8XvfANdeLciPQw8V/19+udGGhCFw0ng4Lw8OPLDr27nW4HCwZMR+sCoIDQ1cVTWFR4bcwTjPUua4zdg8YABUVcnkjxzAtdeK+W+AvxzaQzu6bOB2o0h+orqSftxdXc1Na87k2/bx1Pq3xsqiewrEd0VyOc36NlZCurqaxkhMfu50pPeYT1CiS4l92uJibhv4ELou4dt1ApB7v86qHnc4xQ/gxdW788bis1FRuPE32CKun9Q0Y/I7TqIrFhK90+LpnbXBcmscLhkUhWNLp4sVI7MwEQqH6e+sZ2vvAqLl/SgsrATNiUNqE+fZiMo32OgcOZPo+ZnIQmDBggWM6u1BwgaGJCFYWpQ7mjujhLuHroya1mGxFVnS2TpvAVvnLeD9lknmG5KUypJjUdKmgUNSeeOeJeDaHPqUGyOtFeF+4FtmEM2GL3QSCmQ/f993BRPGh5Gfz+6ufty6Q8q6MZ5lKe29c+ADtGo+M03NCkmCG24QxcMyYcQIWLQocV1xccpmsqRz0IL7uI5LjXUDnXVc3f9pGH1pyvZpkUyaZyLRs1CiJ5Lo3WtGAsJhqiP9ebTuKABOngc7dbFLU6uCQaIXWU7agw5za0OE2uAgqiNlxrEyzUOlkuidnDoaTbBzQVV7TKJb+zutqo8f/ONwrSzO7WCWZ8GBRd+IF5XrryCzjfUDO3Z3gqYmMTicNCnzMxO6JNGNSbl0/hHxTduaRUGtpqaU94waICBI9CLQ9YH81DGGz9rS2E85kshrl5Nzyl/no9YduaTfc1B4JUcembTPAw8kEuTpikl3B9YHYqbJYhBFSC/tZvyysXbRDa96I93f6Uix5fEVOxO9WZNI9EB9h8mOOxz88ksqib5X4Q9sHlmCY7OhQCUA7QHxvXVLEYod7Z0X+e4mOoIyjaqYUIpKThyKaQGX8rMNhQjG7AzdTjWxH5RrznU0aqjQHLIeU/KJQJ6LJ/przXuzMtyXwjleTpFlru//OGHdiXOnCcAFXR7CxqYDO3Z3gg2NRNc0QaADfP65ud5Coq8M9+X15j0BmBsYxu/B4YzzLOWJoTejkzT2GBhTZacp7Hnc0Rr9n/g4YR1XXw233grbbAMXXkhefj5HPPgg5G8NV78Kn35qkOgeOcyJZ+XFH8sCY8cyeOxY0d4P3xH/x+P3KaeIv2S4XOLv2Wdh1SrYeefu3av1gAOOLeL554sgGGKSbw4ADw+5A88Ph9DSJrR7TqfoyylK6hC51+ByGVZsaet01NdTFymhVi0FjxenohOOAkVFZti3yuWtirFVq2hSC4xt0pLosmxYiOk66IGg+c0sLGQH36fidXEOIlALpGiEQ4q+QtVlNttCSPqb1QKWhsX33t+uAbH+ZSBAUHcZ7fN4wJXnoEhpxyGp+JzdrM2TBGtmtsMpJfZns3m+hMMcWfIpR5Z8CrvtBqN3hIUOs56JrUTfZLBWHgtz586lvt70UXzooYeYNi2N//KfBVVVeL74GsJHgCs+8EgtiHnHwAf5IziUoa5qNCTea+lmwJEk81hd/bC7OxDopGDNGWVvs1P+rzxdfyjfdsR8MJOqi6u65WETsxJLhkNSxXlcrpQCGbKkC9K6vg6amwwldF2kBHw+dB0mzp+asE+Zo4WGqFD+FyntHLtPY05EgFNJvYePDbk15ZZIEukJ9OJieOwx2Gwz+O23zCe6++5Uv9RY5kIKfv2V3fJ/5ov2bTiy+FOu6v8fsX74cPFg7+pz75sU0DIRQvEgkdxDSFM9PmGmN5rl9I+uQzicUMi1O/M7ze0KEEFCp6jI8oH0IK31ux8Urlp6q7kiGxJd71yJni9bWHM12mMS/fjNf+WQhfcS0R2cv/JSlof7EVVz9J5Ld5HrcJLNxoYPO3YnYdYsYWw5dqxZdDEdMj1/Y89TI7x18gC46pFB0FiT8X3rMYuKAKWMc1Yk5/KKgtkL5H4J6/5yhIOz33mTs/u8KVaky9OdNClxOVcSvbtKdBvrD934bGd1jBMvFBHn9aIipNZWUBR8wyoMOxE0LbH/NmcO5ZdcAtwnlh2OVFcWWeas8li13Qm7AcI6KG4BE9Kd/GPFZWgvjuKRKbldYhwRCw/vdMvI8WLz6ZTowSDBmAWbx6WtHRI9EjELpMWU6Jf2fY6oruDbZRJZZX6Fw4ZFnMspCPnxeTEhRnn/Tna0saljY4vdS5cu5eKLLyYvL4/nn38+4b277rqLxsZGdF2nb9++XHjhhRmO0gk2NBK9vT1xub5ejMMsGT4h3SQ3ZwfEBMgvgZHMD1Yalm4rwv0gv8C0GLEU9jyw8BvOfn0cQ4Y44ad5sAzYfXfx5hFHwJ57itgfH+fdeafZnuSYkKlQd2EhvP22uJ7kWheZMGyY+NuAcfzxMH8+DBhQw4mrhe+uVw6BIido29IMhXsXbjcOSWQ5px1319fTpuWJ2CXLvDYtyiFn90UpKzdJdKvNrPV7uWoVTdFY39DpSl/STZbNWmQ6aP6gWcHHyl/0cALcK4f414AYz3GkyEhLCMchFYNE9/uNyW9kCY9HUB4zRglLIvY/F9gm6zaY91dCcfSARLf2j+JfIEUxhJl2Ftmmgx6T6GeffTY//PADJZZf37x583p62I0a0oUX4uwogGXbirTdeCGKJByz5HYAji2ZzmbuVd0n0RVlHVQmSP+j3tH3G78GRvBC44GmynbwYBwFeQl2LdbCaHvvGmbGitTjyZIO3jzR/jT+GcNcVbGDRY3Z+i29iyA/P4XQfn7YtTxadxRftW8tWi/pwuz1+++7eb0mLn1kGH89PfEB6VOy8OYcNUoQ6NC54mvgQNh1V/jyS3NdGiV6HHcOeoCFwcGM9lhMzvLyRHETS+c5LZI7RF0p0ZMLwqUp/NYTOxd/m8puc59NWNcd/jYQFEHMI4eRPS7qo0W0q3loDUUMieamDgj5k06saUTCOul+A+HkGeN0A/E4VJWpw66nJlLKwYvuWytK9DwlRJ5TKFV9MYI+W1vVOBpbHaiRYvKVgJkyapPof1rYsbsTdHUfMsXf2ANJhC+908riWmOqAj0tZBmvF6SoGwUNlcRJtLpoScokeCi5yFPailGp58kJ3VWi21h/8HjoUD2oKOikigF0HT5s3VEsKAoXXKDz8vPFRKsVNhvnQfaKgeAlVRexqL0fcrWX1+M7XnEFNDZyVb//cGv1X0FxcMghSefPMBgNhs1+43cdW8CyEjStZ18j61je6XVY5nXSTIAHg9w/+N8EdDfsNAkcln5TD5To8f6wQxG+vwcUxYrvDu/EkikdLN6qLoee+6DexiaFjTF2z5w5k/33358vreMf4Oeff+b111/n21iB6okTJ7LvvvuyheHd0E2s676srncqNkPXRVHvPn3EdobZdAwHHAD77Weq0wG/ln68GNJdyJLOhLx5gkRXzN/9DjtKXKf8k2KlDbccgSFniTfuuQe+/lqcI45Oxpcp19LZBHheXlqLz40Z/frBo48CK/vBUZIYWJ155vpuVircbtNORU0a/EUi0NxMq5oPDic+H0TGbIlWqqI4FJOOKCzk8bojaNfyKHhvIGefGFu/ahW75v9MgeKn4aDTGDgwDYtuKWYNOqo/xF8W3k9UVxjxZhGPEBM39jSLzBpvY/3ouK0LQDQYBWI8RZIS3e0mkcPopN/drSZIsSYoCtWRMiK6A7nBQ7ejd3ItEzALi2LXItuU0GMSfdKkSTzxxBMJ6x5++OGeHnajQkph0UAAnQKM3JuGhk5Jz7QFPTvDuiDRM/ym/zXgMa5YdV6iTQUSl16iwV3mmpvXmMHH5U5v5wKI2e+Yijg+y+6KpbrKSR7xhxZ9wWHFn4Nvl5TDjHKvYCvvQoNEP+wopyCXs5023msvtjxmDDvf8TVfz0s3DdsNWJnc5PO7XHDZZeZyckcl7dRv7LCSyljvstQ3ysu7JtGTC5ymzdMisyd6mvsoOR2WStWdnz4ZzzydOuCLRrpmg+MVv71SCFwu7qo+lRltE6G+kHevTxXcdwfhQHLjdaKBCKTWPSccTR7Npy9OBhi/ScMGSFVzjeUpxwQSVPy5EA2PfLklby4SqaP3DrqHAa46IrWljO5ibGBj04Qdu3uALpTo558PF5y3dkiuzcuqkaRh4HanEOgAIz0rmCkl1vQIBoFjjoFXX+28VocVufYpbBJ9w4fTydFL76QuUkyFo4n3RgobkOmt23PF6n8kbFpREuakk2DffdupqOiLbPlMa9RyVkUqkDti/YVffzWKlB5a/AVuOUzFyfszcOBBCcfMSKJHkr4vuk443C33mYywxlyXV0koLJqORDf6WJVjiDKM81dcLgiC10dwWbIFUncQjVqU6CQG12yJ70iEcJxEd9okug2BdRG7w+Ew119/PXfddReLFi2isrIy4f033niDW265Ba/XiyzLPPLII2y++ebdPv5xxx3HM888k7J+0aJFDBo0yFiurKzks88+y55EX5dFV6+/Ht59V7w+80z4+99Tt7ntNlE4+/jj4ZJLUkl0gI8+Slhs19JnCNVExHgtT46JuRSFQw+Fc86BvhVumNiYutOQIeKvu7AS7J3VW9nUMXiwyBJfuFB8dhsaXC6jsGdK/IqJM9vUPHA7KChIdFozhvEFBUxr2odmtYABP7uIV69j8WK2881nO998uPJMSJdoYClmjQ6qP0RDtAgVmVbVx9zAMJrVAiLLK9mtJ2PJbpHoMQQCFiW6sHNJINFzJPTNJkiiCbLMKUtvpEktYMBrLt6+IesDmdyKouBARULvvLafjY0KPSbRpTS/mO22S+PZuQkjXWFRXbfcl5Tc1p7hoi2nc8+sXXt+oG50wssdLbEq3hZIEmonXx2HU5DoccIVMCph4/UaD5iHBt/Juy27sFfhDwAx3y+B2wc+xD6FM8VCmlR0WdIptKipygbGRl3Zjr5iD97NT9qar//dKh549XXZHcNKjCeTz198kUhQJ5PomexcOkNnXr1xJN+H8vL022XyRE83GeF0IqOjIqElz4h3gaefTSVXukPEx9O9PXIYXC4UyUxFy1V4EgqkIfQ7QqQn0ZM+L71zT3SwkN2qGpso6AFDbQnGsrUjo2bPV/ktqr87a05lTaQcagv4JpI28cDGJg47dneBmPKsqUmMryZMsPzmuvBE33prckoZGeyqYaR7JZ+0TQDEhNyzB08Ddsr4Iz219F06huzCymgRoRCMHg2VlcDkC2D77WH8+O6NbHJ9oI4ebSr3+9sWExsqZEWCiOm3H9YcKQQ6wA5jWlPWxeF0iu+0Fo6iHXk08uZjhU8qEg5J5eCir+GUND7d6chfXScYSep36KIYd49IdMv41ZnntJDoab7iSWnXslNhZocgBtXVOebxW0h0JaZEN5DtbywSIaILos3lFMf6LbAZjdFC1GXD2L2Hqn0bGyfWduxetmwZJ5xwAqNGjTLFYBbMnDmTU089lVmzZjF69GimTp3K/vvvz7x58yiIZTntsMMOhNJkGL/33nsMGDAg47knTpzIddddRzhGfP38889ss032VgzrTIk+f75JoAM89RTssw+MHJm43euvi/9ffjkziW5Bw25H0PBqenX3NVV/55oqC1EvK+yzT1w0JMEZZ8Dzz8N552V9OQbGjhWWL3/8ATfdlPtxNgXsuqv42xAhyygxgWHKuLu+Hk2XDDuXgoJEtxYrie6SRFyPrKqBmY1Cih/L/qC0VCyng6JwTMl09ij4EXnkcJRIgSHmcHkU7q45WdRTqffyvdYDR7+uSPSQ5fft95vCTlkWXWNr/zhXJXpcIW5RosdV+Fo2FizRKA/UHsesjnE43hrEXVOgTJZ5fti1Qiy6777AbTm10caGhR6T6FtttRXnnXce2267LUrs1/P888/zUdKM658aytqtSPFm1fY92r9UaTUKLxlI0yl7adjVACwIDknZVu3kgTJyBJS6O2gMmdcdV5uTl2dMKgxw1ZuerWDMtkJSYbW994Yff4SkbEWnFEVBE6RlnGhPHn1VVor35sxJ39gYib7j3j4ef8EHmsqJ2vPpt80Ea9RIPn8yOb02SPTupNUlEy6ZlOiZSPR0hI3TiSKpqLrcrcKiq1fD9OlujjiCtCqR7pHocTuXUKzAisWbLUchVqAjDYnuTz9znapE76TdBoke6wzoeizw5/77/2b5QJY0HIhTitKqxbML9JxEN2GL6s8XV7igE7FJ9D8l7NjdBaJRNMXJqafCmjVw7rli7Ap0SaL/8AOgZ/+AWhnuyx0DH+TTtu3Qkbiw4kVzAjResDvpx1/saOOZaxej79w/iVDzCE/U7iJXEuLGG4VErrQUjjsut2PYWOeIOwJousxbzbtzkyV70IqIM3P/wmUpth5eVoVnxTKa1EIOWXQvQ13V7DtuNWcMH566oyxz3opLmR0Yhba6kM/uBaca4rEhtxDU3VxfNVnYEmk6gUCnCXpdImKpY+L0KAl2Lil9BqvAxeNBsvgNR3PNIotGuaDiZYK6i/zxY0DeieWhfoR0F1JdESO7PoIBPRwhrIu+rdMJyDIP1R7LLP9YaMrn68gG4Nlro9extmN3e3s7zz33HKtWrWLq1Kkp799xxx0cdNBBjB49GoCTTz6Zyy67jGeffZZ//ENMxH2fg5UmCOX5/fffz0033URJSQkTJ05kcCZ/7s6wrpTodaaoStdBRSH6wWd4BgwQWTiZvL8zkOiaLlEdKeP/Vh3N+/kDQWvtknDH5Uy0hjz3XJg8uWfVLiVJFB+1scFDUYCopSBla6tQodfVURstFZZfDgf9+8MLL5jxz9AfFhbikpYBENad4vuz117mIPqEEzLPxsoyexXOEq+HTSAU2NF4y+n+f/bOOsyO6vzjn7Fr675xTyCB4AlOkAZ3dwotUKCUH9YWLVCguJSgxa1QoEBxL8XdISEJ8Ww263p15vfHuXfkymoC2d3zeR4e7vjczZ15z/me93xfFVVPthuTs8j6Wlrnp9X5/HruHehKnD3vLeb/LutCRO/s5Lzqe2lKFBDZ60BUdR8SqsElK04ibmmM/t9wTj6z9/fgiOiKLaKnNIdeOdjG4yyNVvFdeBysKhWvJk1z3Bakjeqgod/q7mWXXUYikaDNNfy1ePHiLo4Y/PwUGcaZy1LzPixQhDXJs83br5HzL+koA9q63c/NMWXPM8m/lCqjnmtrjs4U0dNRVO6s259TK/6VVXDv6h3gC6g8teMtrP66hhMXn09jogAjlZ0bCGT1QwdYFHGyFZ5r2o7ZhclG2bBhYtR9UxPaWqFdZKDvU/w2+xS/LfY54F/O+d2UlHTdI0uK6NOnC9eVlcvgtw89kXv/bLgbMu7pjYcc0vW+0LNp9ilmzRL/T/cvT0dVM3tW2QrLQW5P9ByZ6AqiE91dJrplwcknKyxbls8PPyhZszK7K05qWRCOifsLKFHwB1wDLV3YqnRDe1vmdYUneibZ7Fxy/fZbWuCvy0537FyAeGeU/rxmX104gf/UCiGsVHMyBPsmojsNEnuaaNe2zZJBzECM3Wu9OJmbWIyFiw1WrhSLt97qEtFzWJ+0xoNc9xd47jn6PMo3ObCE60beSE2sjP1L3oTK39jbzhr9BNctPhAQz/AT4/9Iid6CEvDbdcd6xZlnCi9VEJ6tfWHcOHjhBRFLpC/UOose7wSKiFk6d9Xtl3O/bBp4itUtTrugIV5IxPLZtX1+9E9j0+22yH6gqhKxDDpNP8R1Eb/a2+0imVvlfS3ax5bZ74mb7jjnC+lsVLaM0ysfQ1NMJk/2ZlyGmyO83TITvxJjWHMVkw3hWxq3tL73c+NxDih5U3yeqoO6DX9YejbLYpUUPRPk9Rt6fqpYp/Oe8flIZiW6/GllX3xIsqZjd8o6ZdmyZVm3v/7661xwwQX2sqqqbLbZZrz22mu2iN4fqqqquCyZDb3PPvuwV0ZRhR6wtuyNXA3kgxdexaLoMPIvV3jrxYOFiH7JJZmxs74e3nrLXoxbmj1D9Q9Lz+b99g3BHA15QaE6diOin3y6z64XatMfAV0yoNC0ZCa6iehoHnqoPbjzXaeYtYihM3o0DB9u8cYbwq3HliAKCvCp4necqrHBG29gWgrLjHGU73kwwVxWLGmzyKLtzvPgC6goumVvi8X6LqLHopZtb9SZ7PfrPufa6XYukwNLxOeNfgWA4vfZdQWnL45wch/uwVNYVANU1X5uE73xMY/Hnb9zKqs90Y8ZaZJ1ln6/hffdd1+OPfZYz7pHHnmkv6cd0Jy//FRaEsms0aTaZQvo1dVC1F2+Alqa+3T+zUbX8WFTz+e7nlv1AIeUvmYvuyuC26S/PXWNN1s35/DSl7PsK6xWj8p1QU0lP2SS71/BgSVv0JoIOdYrgYC3wZCfb88/ak44gvL8iCsTwTCguJgrboe7LmjhiPp7Mq+ZqhqeLqIbRm4rk9T2JIccAlgqPJJd5M+JO7u8oADuuQe+/Rb23rvrfaHnIvrMmY63enci+qWXZvdmz0Zv7Fx0nW3yPyVq6QwfVg2sl7lPklgMVq0Sn19/nT5lond2gk+No6mdoqimUeB4s/Xg+Fx0dGSui0ezN8D/NvIW2qMGTzbuxFedk1B9OqHQ5Kz7trRg2zAA/L7yMYbNPgXoe0GemKuwqV+NQoI+Z+G7db+QKxO9v/VgJAOTgRi713pxMjeRCKqa49lNPoBPN+3Ae20bURcv5h9jLmN1uIDn3k7t0/fMuO0LPncWXIUfDh/1Dmq4AwWLaqOeymTR4T6nox58sKifMWwYuHxpe43s0K/zlOnNLIlW02qGxPTvHBy2ayOQPbtycdSZ8r3PguudDf4AjBjJmFwuDKrqzCJLDYC3O3Z8tmWgZfVbRHdipoLhV1m/rJb1y5IzEcdcAq66Ag2rE5y3/FQAZn+U4Iodm9EwiaMR74eIbqPr4rsnB/97O/gdCzs3kcpEd7eB1nRpJMnA4OeM3fX19TQ3N1OdZvdQXV3Nxx9/3OPzPP/88/znP/9hwYIF3HLLLR7x/cQTT2TvvfdGURTOOussT8HUdCKRiMc2pkVU8cZKJDDXhpDe2WnPi7YLA7ZFsJK1ILj4YqzttvOaNu65p/1wPt6wCzfUHsmvCj/gjMpHhYAOyQfaIjX6vXPBRyyKDmdBJC0OB4NUjgmgqqYsgzBESc0iS4RjWNdc45kd8UrrTPHBMJg40WTXXU3KyppYf/0SCgtV8ZvRNDu5K2L67Ei8Ol7MAXW3wB557LKLxRVXZAlQiuL8tuNxIu1Oh1H3KShaana4RSTS999ozNUH13QF0zRRXc3KaDjuPN9tbfY9WX6/aI8bmm0hHI/Tp3eBYUWo1BuJGwECARNTUWwb1YTZi3NGo3YtExQFTTMxTe/f0ZIP88/GWokLSdaKJ3ppLuuIIcKKWAWa/YSnvZRCefTLIxnQ/L37Z5tV8Kln2d0Ryn0RDWIxT1atg8I55wBnOGvG+5ezMCKKk4yfoMLb4h5PrnjSe6jP51U/QyGviVc2kqLx7NkwO/wVXPqWd/uBBzqFNLOJx12J6Omd/75k0qUL49Oni/96sm9PRPRNNgF30aCuisDMni3+++GH7s8LuQuL5rBzuXrkzeLzVvsAO+U8bUbnLkvvMf71d9A4IutMgdZWoe9YpsXto68Uxb/8c9BSmejZ/E17iFtEP7r0Bcb7lzN9cpasVctirLYUgjAtuFCsKyyEGW9kP2+78x0PKH6TY8ueh5lHAn2ofpok5hr9dk+l70smuvtcQTsTXWazDVXWRuwe8MXJ3MRimdrwP/6B9epr7PXWWeTFZtoxD+D++r1omz/F2bcPdi5ZSQ0QA2gah5a+6t1eXJzpz9pTDAP23bfPtyYZOAw3VvM5U7reSVEJbbY+vf7lJttdaY+7g0tIBrKI6BF7Q/9F9NQ1FdF0dD/EacVEIm1OVp0/IFLGdCVOxDL6lYlukxLR7SnhvWtfRjucc/n9iOJkijN9XsbuocnP2e/uSDaY/Wl9K7/fb2/rCXvuuSd77rln1m29sYK58sorueSSzAp/bS0tRFLC9hoksHw5eclsdNWKYVkWUUsj7spQb1yyhBLXshWN8VjTbjQlCrmvcT8AXmjamvWNeVjJxnvcNO2BdrWqiiM3+Z71VtyB0tHB32pP4OnmnUHVSFRVs9FGtayFryYZIJw/+SHMmnoMJUb82R8xLYX7Gvaj0wqwoHM4lmWRUFSmT69l9WqT4cObgRi1tU6s060olmURRyEajaMqFsvGbUFsYTHE4mhamNra9syLWxZKZ5AOM0B0dRBCLfZvOEEUvyqeCRImK1bUkeiV74lDW2unfd5wtIPa2g7iZsRe11TfTG1tcmb6qlX2M9kajRKtrUVtaUHDImbphMMJavvwwOyQ9x47jn2ORGUlTVs8SP3SRrASWJZFLG72+JzG6tXEEiqWZWGaJo2NtXRE23inbhvmR0cTeW8sRy2q7ZEzr6T/NDf3LWG5J/RbRF+4cCF77723x5vtueeeY7e+Tg0egMyZM4c5c+bYBVlK9RY7q3rc6AQHT3yPq5+f2ufzbxH6jo87xPHTg/PRAxN7dXw4W+Z5Gtft8B/++47mZMyrriKEI27m3OWn28u3/XkJm2/jzcZdL7DIFhTKq7Tc2dI+nzeN1tUws3INLrjPlS64/vOfMNH190jPRPf5oKIi+3nTz91XepOFl+471hMR/eCDvcuHHSaK2NTUZO67117Z7Vxy0ctMdJtuUqDcFiFbbw1Hb7mU3/3WWTc9OJ/RiUVw4YVwyy0Zxz/8kCXqu8Y1Lq85nofGXZT0RO+/nUuHy1vwiNKXqDCaoDrLlNRsPiddXNSlCYjMeeh3UeGYy05mj6J3aTcDsOGG6HrvC/i5PdFtQb4f3vKSgc2ajt2DojiZm0jEW0oikYDbb6c9EWRVWx6Q59l9zuqDIVwIKS1/TT1YbhHdzYwZ8Mc/Ci/yvs6hlQwZRuy6ITwOBIIQ7szcobCQ352iioSEHL/d6vVLqfm+IXNDoHsRXXHVM7EsaFnVycctWxBQoyyPJn/jltVve7HDh7/N9vE3iQULKSy8JLOwp6vNF25zidRBFXTdHqjva5a3GYmxIlqJpiQIxvIodg0g9HZyihKPsVnoB6KWzrhh49LsXOSs8KHKz9nvDiWVnvS4HIlE7G0/J3/+858580zH8LilpYVRo0aRHwpRlCtW9gfLQkm+M/xaAkVRMNHQdMPOuSrPy7P3AXi5eUtuqhczBdzjHTfUHScGQFQNw933LC2lcs6VGH+/EF5+md9UPk9cCbD+sZtz0GV+VHUtfC/JgKEqOA+KRNy1LIM7Vh/MfY1ipvvRZc/z5/wHaLnlfkaOrMQ0TRRFoaKiAtWlN6R+uwCx2fsyd7sTeOD1ERjLxD6jR+dRWZlHNv7c8Bteb9kCagPcWvmKfZ6i0nzwa2JZgaKi8pzN1e5Yrvnt8xaXFlJZGWCT8VHOqPonupJg002OojJ1csPgzc6t8KsxiiMTmFpZCbqOoS4lbiqA7uzbCxRNaFd6MCiOD4fxaU0o8V6es6CAuBJDURQ0TWP48HLUcD7vdm7B222bQjyP3xVUUlbW61uU9AHfWiz61m8R/amnnmLfffdFVVV7xMjqS5rkAObUU0/l1FNPpaWlhaKiIhrihXYm+jm/a+eU47cGmvp8fre4PMG/jJXqNCBTaJjoX8ZI3yreavVWaW+KFzDat8pevnnUtdxcexjzk9PGdin4iB3GLGKHhW/yeecUlkar7PlDlqWwU+EnHBt+ngfr9+DkiifZYvfTMpLpdZzWfNxUcwvLhuHtoLkaEnsUvWvbYexV5Jqu7z5Xuog+Oq3oabqYYBjrloievm93jdADDhCV4NOPeeYZOOIIWLDAuy31fXr60uiNiO7+W3XT03V3QA0D8owoqR/NYSWvcHZ10s/4gywHJxJs+NxV8OOBYhqaljyZz+dkotOfTHQFkh36PK0z98l6KaK7k3Jsu5R+iuhxV/b4ISWvUqB1wMxO8PW+s5TKRDeUuPRVlazx2D0oipO5icXIzxev0mgUJo0Ow3Kv7VgG7r9fD0R0vxLjiQnncsqSP7E0WsURpS+LmUbLlzs7uexcPIOwPh+MGdOLLyQZyow5bCv4LCoC8veiSvuOBZ9wyfA7aE7ks+CC+9jqgK4HZ69+oJpjjiyHRYvw+IAFg0yc2EVTS1FcNiRiAHzZ4gR/XP57735mD0T0zz4TlXsPOohsvdBN8+ayafFKMbjkhwh+WmLFmKjktyTIc+VZtDY7z2hBYTITHRGz+xoXw+0J9ltwLQAzXo5x628cC5beZqIX+zu5Y8zVYuGAy0Cd5vwd+zEbTzKw+Tn73WVlZRQVFVGTlrRTU1PD+K4KKKwl/H5/RlY8gGJZHtFwjZHMjukw/Xzd6SRsJdAwkv1eZd48zyGPNOye9VR2X15TcXei99oLqqsVKCoCYJhRzyXD74R9p4O+Fr6TZGDR0MArLTNt6zE3D9bvyW/Lnya0o9OHVxQFVVW9IrriBNa9/3sOrW9527HDhik5a4tqivNuCXc4n30hHWxPdItEQs15ju5IuDUDv4aqqkwYFmZC2Yti5YgD7PZvvD3CH5OJnRs/Xc4/jheJgykdKp5Q+vYuSLXZdR1FVcEwnFlkVi/OaVkkLKGtqKqCrotz2bUBLTDNvv+tJL1jrcSFJP0W0f/2t7+xxx57eNZtueWWOfYeejzyLwPIkvXTC0xXsE1YKh/MrwAyC8AkLBWfktkDqY17p/ltnf8V6wUWMftHkQEctQz75bQ0muywq17bkd9XPsbvKx+D666DLNMGdVd2TDxO15no7saeK3NccwnxftX1PboS0dOvky6id2fnsiZE9HSLlt7s210G4YknZq+arWnZi4WmxPNsIvoJJ8Ddd2e/n/S/Qw47F5teZKLreqpAljg+u0WQg/XyKzTPWyV6iIkEwwrr7HtSXR3IdI1q1Sp4/31Rf7W4OPf5r93/XdoaHqPDDBBUkoNR2Xqj0SjPNm1PQI1QrjexaWhu15noHc5zaqLSEC/EXJWgi19ft7g90e2/Wx87S3GXiG7701p9z+iXDGzWdOweFMXJ3Fx9NVx0ET7fcKJRiIbFM9OliB6JwE8LxUsvfVYUMDXwE0E1wtJoFTeMup7x/mUYSoKHx13AD+GxbBycB8oI+NWv4NVXhUie58oOcqe1yRa4pBdstx2UVvloSCaSzy78gLOqHiakRgipEYbtXgDdNGWmToXfnqxz1wU6RKNsFPyRa0bexNzrn2fqZl244SmKsy2ZiR5ujpCazTElsJjNQj9gFAQYPryLmZbt7aJNBKKo34UXZu6Tanwk2yv/XTmZ8+aLY856TuHw451dGxudzyUleOxS4r0pJOYiHkmQauvohjhnXz3RPQMVaf7qcgB86PJz97t32mknPvnkE3vZsiw+++wzzj///LV2ze5InwG+1hqySSuAsOkV7uOWjk4CCwU1+Xd4vnkbnm/elu/C2WtK2KT1A+3HPCmi21T13QpSMnhoSeRlFdBTtA2b3G3lLaOsEJKzpVtjgQz1b9as3MfqqvNshTtdInpQx/Il46TVv/pa8bhzXrugaI7EvUirc6FAyNnXjt19rRWSOjClOWmanXDW7eulsVEUC9x8c09hUT01yOC2YsOS9UwGCf0W0YuKivj73//O738vMkoef/xxtt56637f2GDhnY+6FmkDSrRLu5WgGiGgOC+MOJpTZSKNn6LDmZrybnZxRc2v2aXwI886vxJlk9BcDCUuqhyni7vJayiuEUiOPZbMEuGC+rgT/Nvb6XkmuiujwHQVfFLJnq2eIaKn99rSlw0DurAB6FaIuPNOeOklYZ+Si95koqf/nfPy4JRTRPXNs85yOogpkjYHPb5u6m+VbdvJJ4uUh/33z7yfHmain7j4PGpjpZR2Brnnmty35hbRm5pgWGE7fxn2ODFLZ2Jgae4Dga8/DnPRipPs5VdatuTA4jfYzO93ZaJndiDPPBPmzoW334brrycnIToIGY10mn4WRYcTtzRK6pUMsTveGePSlb+xl7fK+5qEanDku7DNNpnndTcu7qrbj7vq9mPYFRX8J0t92Z4SSzi/T1tE72NnIXUuIaLnHoyQDA1+ztg9UIqTYVl20SU++QSOPprq6leprVXQiWEBjYku3smxKKTefW1tDDfqWBFz3izHlz/DDgWfYVlOqLIQcX6T0NzkLVhY554rGuMzZngeUE90syxZnEjSYwIB0ZyZOxdmvf0vfC//B0jOyRo7FisYtH9rpmnafp7pHHYYzL/2cyr8Szij6hGMojxmzvIDXRcVc9qSFrGYSUeTk1yyff5nnFjxbygsxBp7Uu7zfP658ww88wxWFhFPcYnolmmiaM5TEw17iw/Wu0T0whIFU1Xtjm4srvSpIFU07PSONc3CtCyPJ3qvzhmNOgXUNA1ME1VxBsBjMVls8OdibRYn6y0/d7/7T3/6E7vssgvz5s1j8uTJPPzww2iallHc9OckfQb4WnsQkm2DsOntp+81/waaE/mM9tXYs8AfqM/u+Q5w39hLOG7RxWIhrR9oN0XSE6OkiC4B/rvt+TAPEcSHj4CF3hnoX+x7MbO7Ocd6R29B7cNL+CEyPqs+kC0nL4Utk1gW1dpqLh9+K1HLYMxeV/PaC664Hk7Q7Uh8DuLuxDt/luQ+l6jgtmEL5Cf39fnQk33kvg6Av1a/Ca/Wb4reUcix82BycS9mkV11Fbz2Gjz0EJxzDnFLJEgaKRFdVe37w5JFwQcL/RbRn3vuOYKubNpDDjmEO++8kxPTxcChShepJw+Pu5Dzl5/ComjuKbTFWisfpKp5A2+2bs70GVG+WpJ9f0PJTE2p1Bsz1uVpYe4ac7mzQhX2EPeP/QvHLvoLKCp+NcZkv+tC6QLwtGnw7bcAzMj7lv+2bQokZ5jnEpbTPdFdL8mE5QiGbtsOz4u0t96vui7sTy6/HC65hF4PlZaWwmmniZGBkhLhwZ5OfzLRAY4/XvyXut/U21XTurZlyXau1N+9rAy23BI+/BD+/GexTlEg3eIgV2HRHJ7oK2IV1MTK6GzN3ByJiD+xacJxxznrP/0Uzlowlq2i1WwSmsuGwQWZByexLDj+nm2AOs/6xdFhbGYYHF/2DIeVvIy26UaUrHeVvb21VYgDIET0Lkn5JndM4fSlZwNw4iv5nLitd7fOVm+Ue799Q0Bhl1VkJYuVM/FY/6bYpoRvBQsFi4SlYsYVdKv3NXBvmvEIHd8uxLIUnmr9VXKtzGYbqvycsXugFCeLxePEXTF7yQqdPSe9xg0vjaPJH2Cvzus5qeyxHk2dP6L4eU6veJjTlp3PJ52ieOpodZGnIFk2EpEITZGIM1LnKmZUHIuhJY+PtrfTKquNSXpBIAAbbQSNG/4Wdf89sUpLMd5/n/iGG2KuXm3vZ5omzc3NWDksEi485huCTzwBcWg67tQeFfSzEMK8ZZrU1q6mYVUzliUSHAyrg3gshtXaSkMX5wp+8AEh1/NTn2XfpvoizHAIva2Uwtpa4vGwU5ysodlTPK2mNmZvU4026puj7FPwGm1mCP+kCdTW9r7WQNOqeixLZNibZozVDQ1gxUVRt7jVq4JnwYYG+/u2tLURq63Fspy/4+rVdfj96464O5hZm8XJesuajt3RaJTZs2fT1NQEwGGHHcaoUaP417/+BcCMGTO4//77OeKII+yi4C+//LJdy2SdYG01ZJMiervpfRekZqQtiVazJFqdcVg67iLkIV+cOx6Eo48Wyzkz0WXlQQnwTMevYFwEfIZwCSgstH+X5RNL2Orw7mtknXheOYGR5fxwc+a2Aw7o+ljVlUyZb7awa9EHogO6qc5/k/KMocRJdEaBvtXncfeVdUN0bqOKn6ZYCXFLI6/JIvV0hFudNkAgL6mDqCp6qp5JH0X0hZ3VvN66BcQC7FkHk8s0rhp5M3FLR9tqBnBx7oNfe038v6MDli8nZq0HeEV0zZVIkIhb8P0Pwr6xqxEMyTpNv0X0iRMncsIJJ3jWrU3/mQFHF51tQ4l3KaADrIx582PjlsYVf2rhto/e4fnmbTP2fy5tXUCJctGwu7q/z+S/2bTgQt6dcgJvbXM+6330AP6Eq8OfLtpedZXIbAYOLHmDcr2JkWccRGnp1K5FdHdjxyWqzI84Au+3nS6vPfd1e6IchkKOQXVnMttp111FhcvPPxcpyz3F5xMvuMuTAw5bby2KuXW6LHr6K6KnXy8logeDXX/fbH9jt+j+97+LNPAuMjJzZqLnsHNJ2QVFW8LCm3STTex7fOQReOXZTmhpIbw6CDgN7O8Xh/i+fh+OtF7ivvq9iVgGo4xVXDbids8lPvuMrBklxVor+P0U620U0waBZnDd4vz5ub9iBskWq8eCKIvYnS6iC3KLztlE9Fg/preBN3v8nGV/EANVK4p4+cysdrBdMjpQC4HFAPy+5Bl+W/IE2shhFI3L9K+WDH5+ztg9UIqTGbqO7noXHjr/BngQVGIQi7GKcl5u38EugNQlmoFuGFw28k5urzuQaYGFjMtrIGX1kML63e9QbrvNXtYNI2cBIyUQsAeV9WCQ4NoopCYZGqRmhWSpBpqrOJnNCSegtLZiTZhA0ZFH9qhdZmgKiiL+KyurYEHCZz9HeXoC3TDAsqisqMh5PmXxYk9SRbbn5LSlp7EoXE2oQeGtykry8wP2dYKBfCornQ5rNB6yt40eV0pZlcUJVS8AYM3YCyoP7PZ7pRMPFtjnDIV8VFRVoavzxXdXFcrLK3vsxDSvpZrLlv0NnQS7fTmZQ/eqxKeDrlhomklZWd8LuUl6x9osTtZb1nTs9vl8vPXWW13us//++7O/exbrL0yGncsa9IR/7z247z5RdmF2Uqy8v75/9nDuWa0HjP+SCRMm2Mvvv5/8sC4NSkjWGU7/g8Lxxzv2gAceX8yffzqXheoEym+8sMc/m0WLMtftuWfmBPh0NM2Z/RRPzbQKBEBROHXT9zmt8xoRsqe9Tp9F9FR3W1FsEf3rleWcNP8mAI59EX6/j9jFk4me57TXNc2CWD+s2OyZ34qQRFSVYUa9WBVqyn1ge7t3ubmZo8pepCmRj2/WroBoa9m2OJZF/MVX4b7zhN3ws8/2vI6dZJ2i3yL6V199xerVq6lIVhRatmwZ77zzDr/5zW+6OXKI0EVgXxTpfvQwneFGHdXjqrhkxgt88OaGHhuV0b4az4j48WXPckzZ8+RrPfBkd4m7fjXGrhuugB9bvAnB6Y206mohSF9/PbqSYOfCj+GUpBiQy2s82VGycb043NnnfjXq7J/eofrzn+GOO7zpzm7y8x0Rva3NWV9QANtvn/2YXKS/2LbeWlivuKdO9qewaDq9ybrvys4FxN+tKwE9tU/6cZAzE71QE8GiNRYg8dvj0O66HTYVMxA+/hj46ScAvnjWhJJRaK2tUFlp/5uX6c183TmBqGUQMTODRksLYGY+M2P8K73/FmlCe10dPeaxzyYSr9+Nn6JOZkgsmnnNcLujlqtYdm0CM2GRUVmXHJno8f417EcGVhP3d6KTcHmh9rG/4PJ7KwxEKQw3gR5aA1FAMhD5OWP3QClOhqKgIDwoX2zOPj3+w/YNenQNJflfpdHERcPuzr1fcbGIS6kpNIoiihplw73esnLvJ5H0k2zFyWyGD4err84SBXNzTPUr7JH3NsrwYRQVXUzUFV+DQUVMcUZDiSTQQzk6lEu9VnBKPO5tF1gWsYRoy/o0E1VV8bmaNmbcm1kfcdX9DhX7UQ3nnhTT7FPdAdMV8w2fgqrrTg0SQFF6XlCsI6wzNyyKB2/WEkBVVS4e+wAXV90B48fDuMd7fX+SvrEuJYfJfnemnYvSEzuXbM90LAb/+x9MnAijRwNw5ZUWK1cqfPYZzC4TIrq7/d1b/lR9P3+rcaxvRgdXYxhOvtdWWyU3rKXisJKBzfTpQmc1DGG9PWFCPmiP0NuWs7uffMghsMsudve9S1RXPRMznNRmkjV/VL/hdIe7rQqemw3zf+Ly4bcSN4Ksv6XwirVtXfAmurlFdH++E+B3LP2KhnYfeaV+oGftdBvTJJ5yQ1CSIro76bGrmS7z5hG3NM5YehbLYxVct+BDDip5XWzb2XGS0NTUYAQkbrtTjDfU1cF338HGG/fufiXrBP2WTw477DA22mgjxowZg2VZ/PTTTzz55JNr4t4GDBkj4m6yCIIp3KJxqdbCBsEFdJgBhhl1DDdW82rrTM8UMHFMQrxJTz+d+lcdAf2UiifYs+gd/m/pmcyLiIbAKN+qngnokNmw0LTMqWTZsqhzZSBlEygg087Ftd/Rpc/zZcckwpaPMysfFiuzifEHHijmH+W6dn6+MwXeLaL3hWwN53RhfU1noqfIUpjOQ3ciek9wVaP2kO17qypFmjPiujAygkmXXw7J572kyPl3betQ2U59jrdbNxbBJzlUXqo141diQkS3ctyr5W2snl31EBP8y7sU0d0DwWefnf20Ke74eDNa6rwBNps/WUebc418rYOWhJiinYhnF9EnVjSzV9GXRC2dV1pEkad439sUAFy93r2wYgUA5y47Pbm2j8VAU+8nTXN+h9LLZcjyc8fudbE4WS6urDmOV1tm9uscejcFlG1kBopkCDA9/ydQ2qF8LPi9HeF3Iltw6SLhbXDmo3GOOCHLM2Gaonq4m8ZGr29wImEX9PLpIkjqblvViLc9blgR8tVOIpZBoNAPumvqWB9NS+MRJzjrugKqyrUjb8RERd1iM1T16p6fK+qcy/An22Spttk65NEt+XmR/e4sdPc8XHMNPPGEmHnz979jT+G46y645x5hpfLMM3DllVR/uhUr9RlQUc6bSydixcdRE+t+6udvyp/hH3X7Zqz/Z4PXsbqp04+iwL33wgcfwO67Jzest56zk71SInFKuyXHzfrETTeJRLWVK70/te6wM9GxaGj3823neIyCEqpboDCHb3lvGWbUMaxoidBvkqMDHhHdFQvDHc7nQL6jXfxh0gtC+6moAHpZr8E0iSfbDijYmeju7Tn56Sc+ap/GB8kEmzNf3pWnK55Ifgl3pnzqk0XC7R2/Dg3QSnpHv0X0rbbais8++4wnn3wS0zTZf//9GTly5Jq4twFDRoETN12MLLuLZzYkCnm7bRMATip/imPKnueOugNc+4pMWBUra6d7r6L/UWk08reRf+f/lp7FcGM1exa90/MvkVFYVMsUcbMJwLm+Xy4BOF1E13UhhlsWPjXOzaOv9e6fK3O7q+nD+fnO5+5E9Gzn2WkneOMN8Tn937O/dPeydAek7kT0rjzRe0ouET0HHa4a4DfWHs6cqU/Yp3nzda8g+7+2TQBLKNx54t+kTG/Gp8bAhGguEd31+3h43IVMCSwWfzdd57vOcXzVOQnzxzHssFzYiUFSRDcT0NJCWTQM5J7lEY1n/htky0TvbHeJ6GqnI6LHTCDzHDtMXskOw+8EhIf73PCY/hcPcZ3A/b7oS8LKs0s2Rm+uoiw/wsyiZK0DKaIPWX7u2L0uFidLHwB/pml7oLjfAjrArwpyeLRrmpjBdc01YqB61ixwT6Xv6uHuaaNeIlnXSLVXkr9b90yv/EIVVorPsY4cQbOhIbOT3tDgFdFjMVtE15Mdf91wnpl027bzNn6R8zreEwtj34CwiWkpxC2NRCcE+lB7RLQPBJqugKZRoieLyBht2cbfc+Jul9jfQ4roQx7Z785CV23ZcBgee0x8XrBA+BcfcYR4hu65R6xvbhbpvi+/TJG5HtTXQVsr50ROBbCtLLtiw+B8Pln/GFoTIfZdcB0tiTxGGrXCjtLVJ2koHAvAhAniP5vKSrjiCvj+e/gF20WSwYmiCEmjt7KGO4P6f6vX41+1J8IKP+e+BIe4tYN+iOjumdIpcmaip0R0VSUQdAXUlGbS2cPkUTeJBHErdT3HzuV/rRuzMlaONW8SB8Ry5Ck2N/NDeKy9uKylAFKDHW4RPWXnkkh4agDSi7pQknWLNTKRv7q6mlNPPXVNnGrw0UWHWMsxPSxm6ZhpIl3KSmJ+ZKQtou+Q/5ldzDN1rtG+VTw54VzvCUtLRWejK9LFXVXNtBPJJgDn+n65fG7TPdFVVbyVchX87K0oDGJ+0ldfic/TpvX++PPPF+fYfPPeZZn3hO7UT/f37YudS2/ppYiemuUAwtag1nyLSuCLLyDa2UWnzmXn4k/5qpuZ0cgyLWhz0soDSsS5P0Xh/fbp3Lb6QGgJMmphmoi+sgZamsm7/hY48u85/+1SIrqGSSL5nAmLFi+dHc66PNUJytn2BTyCt5GqEh4XX723HfGMc6qqM53U6n3/2TTh0u8OgliU6UWL8Re+xDf1m2GGC5hd49jjSoYWazJ2D8TiZOkD4DesOhJNye/+wB6Qc5DQ7xezqaqqRBXuggJRWPq//xXbu5pK436RSBFNMpBI/XZTIrormyy/yInVsY4cHfGVKzPXNTZ6l2MxommZ6J5EufTB8rDLzyUQgHicExefzxedk2F5AR9e2/smYDzitG91Q/E+s70c/fYUW/NJEV3iMNT73b3yRE8XqZJtFL74wrv++usBVxFQl0djznju4g9Lz2KYUcffRtzCJcPuoMXMw1DijDBWc+yivwCw5Yhl7H5hdqs4AGbPFv9JJOsItp0LFuGYaq80DPi2cTgvrzqSmKWz21cKG43OdZZu6IWIbs88V1Wv1JTSTPoroqcy0XWdxxpniwzz1hB7RnKI6K2tXteIeJyGeCG6ksCXMEilQ44PrWLrvK/QlQQFmuudJEX0AYt0w13b5Ajse0/6AX119pHzmKV3PRU8+ZJJuIR2jS5G4V9+Ga68Ep5+Gg4+2BmRd5MukOt6z+xccjXkcwnAhiEyvV98USxPnw6vvJJbRO/LNJff/Aa+/lo0gE4+uffHFxXBYYf1fP/edGa6S012DzD01s6lqgqKi3t+L+Bk7fdQRD999DNcueBge3mPt87lIzPZl0108d2S28r0ZjujI2IZfNq+Hv+7UfizNTXBub9t9Ni52IEmKaK7q4S7/+yWBYHW1YTxkR9tEHPWsvjBmyaYSYuloBqhzRS/02z/LO5MdLeI7s40835HV+c59TxaJolEP8Y7Ujfm83kS2HqbiS5Ok8zMUy3eadqA+2q3AU1j6jIpokv6z0AsTrY2SWSZrQKI97quiwz0FNOmwS23iMb/dtvlPmmfR+Mkkl+WZbEq6jsqSTRUsX4nqLEIQTVCpxmgqNR5VqLt/RPRM+xcXLE3o4B4SkRXFNE21XVXcosoIt5rET2aJqL31Fc1C27RP2Xn8kbzZnxSM5JEezHHrnCm+UskQ4mMGeBdPVvpolprcmbIggX2qtdbtsBEpUhr41eFH3J3FluWnrAyVo6FwnYFXwiP9SVi1udTE86h4eg/sNFZv0JRZRyXDByOHf0mBxrPoBXm8+byyWKlouLzwcKWch5pmArAxIUqG/XxGqs78qjtHI8eLmF4q8gt8YroTr87Fk6Qr3bSphR5JY+U7pRIiKz43tjbxuNOm11xMtHdM8BzSj0tLcyPuPxxTJPZP94CwLSbS7h/T7F63+oP2df3YubxfRH9JesEUkRf21gWmw1byVT1TR5s2AMQjd7dSuehrs7+RIYtvyPCZSMpLJuu6SBucTEDRYHzzoMzzhBKZTYRPb2nkC0TvTd2LrlEdJ9PTGVvbRUZ8nvtZY/+e+43dd6+ZNsEAqLw6LpId50o9/ftrZ3L3Xf3bNDhjjvgggtENZuxY8W6Hqq8+wz7mOYWhVtXHyRWKAovvJD0V+vquyVnQhRrrbaI3m4GOWnJefAQPPUUbLABsMopPPirwg8p1UVRn1Qw1FzZ2O7LnXQSTL3+Fr4Pj+Pttk0Z26pQmKWmaiyG/dsKqmFHRE/vXAMRV2Z9SHUy1nqSia4ryZszLeLxvovop889BTNmMrqg0RXMe++J7v7ehmaipn46Vh/91SWSIU6l3oiuJFgRK8/YtkloLpuG5mY/MFe9kC237P6iMhNdMkC5d8WuPLNyC1hh8NgKOHnEfzg5MYd4fjFfjD3B3i/emUNETytKDAgLBhdW1GXnkoy5uuE8MxlxPpVp6veLZ0vXRd0hAEvE7t6WLJhS2cRTE24mbukUzP4DqJN5o2VzlsWqSPwwliMiuV8B6WTLRP+ibSKPN24LrQZ71kkRXSIBuo6HuUR0V6Hia1cdxep4lk5Dkj9V38+KWDkP1O+Z+zqqCppOiZbst5x8suh7I2aJj54Sdqf1SiQDgtJAB6W+VWA1oTBJrExmolt+5/cc7ey7PeiLtZty8+J9YbmPqz8WuZZ6wOk4u+uL7Zn3FntOeYXYxPVh9oP2+nM/O4xP5p9E3NJ4takTf0UvRPQcdi49mgHe0sJplY9xxtKzMjYZrvZHzhF5d1E3yYCi3yJ6LBbD6G0xw6GEZbFxdQ1GnRPEd9wRZtYt4/Mcdi7/atyZP1bfz5Uj5vBS81acUP4Mxyy6BIDhhlNeuceZ6ClCIWcaWzrpGW5r0xO9pARuvDH3tQMBp9HTnQ3NukBv0oK7E9Hd27tTXtO39zSdeLPN4IUXvH/3Hqq8hl9lduEHHhH9L3+Bc86h2+9WrLWiKabwRE+jowM++vdyezlf7eTKEXNcF06K6ClvtmSWmJvXW2fwXPO2AOxVZ1KYZVqZV0R3pmpmu3VdSVCqtRO1DPJdU69EYdFM/vzvGXw4bwv8SpRyPdm5t8x++aJ/1LI+cVOhSVvJeGVh8py918/E9xafDc1ES706LGmLPlSRsbubouDdcN3IG1g/uIid591Kc8JrAVOitToL5eVQ58TtHito2XAPkvalMIJE8gthFydLxZxkvRq9IIjfVRwsFs7xLLY6z9TTTTvQEC/iqNYIbo07EY5hJeds+QxxvZGlHTwy7gJ0JUHRIVcAlfb+N3+3C031O5Kfb3EmgK67ZpFZfYrdPqKM9iULoJZboKr8p3l7/te2MbSG2K+j568At8VsKhNdcU2tl6+AoYmM3VlIbxS/8ILoPx5yiNe2CcS75PHHSTz8T74LT2CKfzEdZtdJS3cGT6fB9AO1uXcaOxYUhdJDdoHZ22Vet7vEKIlkXSSl/UQijq2RoogSdz5HR4hF+p7YEY8r9nntAfCQE93tGV6JhO1cYOT5wPUabLdCdu2yeFsYf0Vhz28gkchaWFTF0Rxy9rtbW9k2/0v2KHqXF5q38Wwy3A2UXCK6zEQfsPRbRH/qqac49NBD18S9DEr23WwZ25Yv5YQ3nSKhm28OvNS98P2rwg/5VaEoTnbnmMt5s3VzDil5DdgeEJ7UKXL5q/eYbIVF0+1csmU553qr5PJE70nDb+ZMp9Da1Knd799bTjwR7hQFINlxx/6fb02K6O5eW3fziPvjiZ4+cOH+t3UX6spyzeaEqyGYPM811+D5bmKatreneOvoq4AsBXo6OsBnQIuTVdZmBqmNlVBpNNrXTb9Nz0/v1lvxu56BSA5/9mgUSNq5BBTHQijbP8vsTVYze7KoL7A4Uk2Z3oyKxfSpv8167uYOg5aEAeRx/cgbUBULfcamhELnZ92/OywL4qYKWCJ73LQ823pDZiZ66t9fZqIPVWTs7qYoeDf4k4OBRhbrtdMqXbO9Ro5ccyL6kUfCX/4iPh98cJe7SiTrEnqaTYqdfZWXhy/ktAtjnTmU6+T+LzRvw19Xisz1sk8Wsu9Jzi7uYw1dxDtfQGVyIFlIO98ZOAd4s3YqS9tKKIzGHBHdzkTv3n0vK+6DkjZ0iqsj3pvYnS0T3W4WygHwIYuM3VkGwN0N2S++gIsuEp8NA8aP9x7c1gZXX82VNSfwdNMObJ33Fe1GsccDPZ2GcAjiabajRcXQ3MSMvG/5qH0aKAq/+4Of4AnJjNT33/fu35/YL5H8Urg63jFbaBZ2Lgm/a1tfRXTLcmKd6hLR8/yQ1MniKWszt+Cc5niguYuIt4kBrJUrhXvwrFmZrwEPiQSbhb7Hr0SJj5tEXt6o5O2kBv+7FtEBdiz4hDG+GkxL4Y46ofnJTPTBTa9UuNmzZxN3NRAty2Lx4sVDPph3RSxm0RQO2IVBN5gSZdtt/fCSy/KhB2za1fRw8Pg29Yl0gVzTMi1Zsom2fbFz6Y6DDxbCw6uvwlFHdb9/bzn2WOF7PnKkKOz2c9IbO5e1KaJn46674I03uhZndJ1FUafKvC3GtzRDrZOhsV3+57zSIuwJhht1PDTuQgq1djj/fPwnpTVEFy/KmqHRmCh0RPSu7FwWLoR77sGvHmkfG+nIUW8ghu25Pty3mutH3YBGguAh5wDjvDu73nVj/DWcVfWwWNj8uKznbuoQ96grCdYLLBJ/mmA1uayRu0P4oSaFb91CjfbTzsV1LtkRH1rI2L3mSRU9ziaih90DiCNHeguY9acjvcceQgDQNNh5576fRyL5mfHEnEjcEazy8jDynWci2pkQsffRR0XNlv32E+2Mjg46TT8XrXBU8ze+r8btXOwR0VO6fBee5JGY2OZP+qejKK52ed8y0bOJ6Jqa3YauOzyZ6EFxr27rRpmJPviRsTs7GQPg7ofhmWecz9dck3lwsr7C0007APBe+3Qoy+9SREfTRL+xoV4sV1Xx+nlvUHS7SA4yLQX1+f94ZwSnx/reekNJJOsAc9tH8HXjBExLcfr/STsX1ZWJHg33UYeKxYgnkudRVZeI7gOEaB5P9X/dRTjTkjXt4ttAol2I6FdcIcaynnoKnnuui3tIJDig5E0OKHkTdpgNRTunbsemKzsXgB0LPmXHgk9piBfaIrruyhv9T+1M7l8wkwQqR5e+wNzwGNrNIJt/XM5+XdyaZN2lVyrcGWecwR577OFZ9+ijj67RGxpsRCPw7pJR9vL2W4RRlALA67Ps5piy53t9nTWeiZ7NE703mehdFRbtDkUR/u1nnNH9vn3B74dfqgHaXab5Lymib7KJ+K8rDIOLXZ1YFEX0ClessFcdUPwmp1U+zqLIcBKmxR3j/iYEdIDqanYr+icbBufjU2LcsvoQsT592iPCs9wm+XdzfoIuIbmmhgfq9+SRhl3t3cOd2XuX7ozsgBKl2kg2iP1ZfFhz9aBz9IIbO/xAhBKtxUn0z/K9eordaAB03eKoghfZreh91OkbUF19Tq/O5clE103XT8tKFkrto9IvGRDI2N1zdMXtjZibD9s3oCDcwWkVjzMpsJR76/bmxZatAaiJlTnZr6NGeQ/sz5RuVe1d0WuJZB3BU7CzPcxfV56AismIkiJ23NY1bTsShyefhJtuEitGjIAZM6Cjg7/VHOs5Z57inQadb0R4bdJpxCwdbff9gc27FtETSRHdSK5XFMcyzsq0jOsJy1b7eb9xZ3QSbLAij0m4he/eDYBvWLyUUyoWE7c0Jk36A+BtA8kB8MGPjN09xP0wRKO59wOorc0cgCotE2JYLEdNBlVYnJ74G4tSpZGDrp0MTzsCoqpYmSL5+PFiXTQq+muTJ/f8+0gk6wjvNazPnBrhgDAqZVWWtHNJBFyZ6NE+6lDt7cRJxmmXiF5Q5uex8WegYZI3cyYwEzo7OXfZ6RRo7UxZWMYhrtOoPifWm+2ibZCaDFJTIx7vwlwOL+mD36lzqt1norc0JmiNVhBUIxRq7Z7+g7smS6uZZw9C1MZLebJpJwB8i2uliD5A6ZUKN2vWrIx1Bx544Jq6lwFLV76q0Sg88d36QBOAM9oGjPWvRMGyPRwBNgv9wEnlT/XouneOuZxbag9lt8L3+i+iZ8tETx9F7070ddOfTPSBRq/m53Yjov9cdi59xTDYueBjXm/dQixbphCKXX+Ds6sexKfGeXj8BcSiMQzNNXAybBh7Fr3L951jmbP6ELrCM8jUKDLS3b9z+6enKLzVupnn2HBH9t+lqsLkwFKiUag0XH772XqjuUT0LL95y4LGjgBCRHf5IXeV2dINnqw6zWK8fznj/cuhshByPF45z+XxRLdcdi5dFEqVDBpk7M5OttjdEwEd4PKa4+3Pn6x/DDPyvhUiuqqxIlbh7Dh9uvdAOaVbMgRxN2ciTZ0807Q9FgpTa8LMzneyy2JhE26/3dn5ueeEiN7ezvPJmicp6lu8SRlqIkaxLrzWKUpOA0fnpaZtiaNR9lke26Xq98bjRE3Rhkr5pwPomtNp7ksm+twVBVyVFPv/8H2QSbhruXSfiW499jj85z8ovz+N9QuXs375x2LDemeK7+iqZyIz0Qc/Mnb3EPfD0J2IDlgolOtN1MWLxQpdhwkToKMTYlE7W93GEO+KE2+a5qxL78+mLxcXw4MPwuefwxZbQFlZz76LRLIO4Y5fYTP5G1dUkYnusXPpY0Dq6HD8yF0iupoXZII/WStNFQlvkeYwb7RuDsBGi2NeEd1wNBEzHM2ItYsWZTbHbdw7uxor3WaimybPLd+E61cdAcAVI+YwLbDQ3my4MvXttgXOTFaAtg5ZbHig0isVLpTF59o3GEXRXtKVr+rb86oApyXufggtC4+ADnBs2XO212p3bBqayz1jL+3zfXvIJqKnZ413J+q6kSJ6dnKMdtr0JhO9N/8ea4pQiN9XPsb/2jYWBUZaW73TqwCf6nxHj/V6KCSmZwOr4yV84PL0z0bQFWRSGd1OlpjrT9ne7vi0JcnliT58ODwy8aJMcTtLz/aFD8t4d/kp+JUox5X/h9G+VZiWArFERt52e7szQFast/JN5wQWR6uJ/zSCHbsa/e4Cd4G1lL8r0PuqoqS86rLYuQCJaAL4BX5Lkp8NGbuz01dP9AOL37CzSFJUpQblqqto2fkgKAV22y1ZBMWFFNElQxC3FVvtcqcAaEVRlLJKjZtHXYuhxCnbcjd4ydUGTrWTshTfqm9Pe5bcM7+S77e4YvCXlScCsPnLxWx3ithsdoRtQSDkd2Jtf0V0zwwyX6oYqGKfs6vwHQsnOPHUADWxk7nty78ydqarPk2yPa66Z5HJTPRBj4zdPcT9MPQgeUVVLPYsepf76/cUxb8BFBXy8qDNZOu8r/ghPJaGRKHoyGT7m/fErmXCBPGfRDJAUXWnx9uZKsCrikz0eMDpO8aifRTR3X14VXOkJ/eszWRsb6sLk6omWpTvDaZuO5d4W5jmZs9mfvihDyK6XT4sRz2TtjY6XPaNUdNgecwpXm647klziei3uJII2zpk/3ug0uc5/K+//vqavI/BS9pT525Apwt/sAa8zftKX0V0mYneOxG9pMT5PHJk5nb3izybfY6bXyITffRoRvpqGetzZWm47zkvP/exlZX2dwpb3t/BTgWf8NSEc5genG+vC6qZDeF8I8JoXw1jQ7UpPR5aW4n2UETHsuwsFdNSeKRhVx6s34MXP63M2PX7JXm83LIlzzZvzwdtG7L59w8w44f7uebWvIx9RV0R8TsoVNt5tml7Ll5xEpd9dyA1NdlvpTvcIro7U64v6WdKIk6F3kiR1kaeP+7NRI/LyqJDCRm7+8c9Yy7lwJI3MtZvEfqWQ0teZeb6Lezzl02FGeP222cWce6PnYtEMkBxsrAsVs5tsddXFsfwFQXZOv8rtsj7jvH5tWlm4KIdarWlim85z1NHxNUm7eiABx5wlpMj156Oteu0keawLeQHfW7rtNRt9k2kzloMNNsMuiy881IbX3dOZHW8hN8vPSfrzESnUy8z0YcaMnZ3gfvB6kEmOkCJ1gIjR0FFhXeDqjI99KMQ0CHZb82SLZren+2JXalEMsDQXDYpZ1Y9zGuTTuHF015g7FhRuDtFNJWJvmwZver4dnS4RHTVeazcg1TJQfRIq/NsB9Idh912Lp0RSkvFRJAUX37ZxT2YJqcuOZcd5t7BzvceZYfeUl8bI4zVjA6uzi7JtLfTYTpt+r+sPJFTlvzRXnbbuWha9ozztk4pog9U+qzCLV68eE3ex6DiplHXcuayv4gFM01Edy1GrExBeWrwp7V4Z12Q3tFX1cwGwprwRB/qIvpxx8ELL4gO31//mrk9x2hoVn4hER1gXmR01s0X7v8NfJrj2MJC+zv912W/cl71vaKYB/BV50R7vbuAVoqdSr9gJ+2/wmd49r/FytZWYpY3izQSzvFvEo/b/14WCtevEsVIN3ovwO5pu7rb4QHD+XdJxDPPHQ5jnzeoRvpfnAyviK7rsDAyguXRCqzlE9ikFQoKen6u9SbGeTHpqcr0LXhpxXTG+5ejYpEf/JmL60p+UWTs7gFFxdDclHXT9NB85oUz33+KAudUPwhnbQzV2d+PgJP1JpEMIdyzyOr/+w0wFYDS0fne9mJHh7cdlBSmOtuS6zQNzARYFh1RVxvo7rupfW8+zzTtR1CNsEH9KDYGNMMlorticWezE+CDAacde8SYd9nVeAO9OI8RI1y2Mj3EI6L7k8K3bcHSdSZ6Z61jBbcyVk5HWCUaz0fXIWQpqEoWT/SGBmEb0V3ShWTAI2O3Q4YVWy880b/smMRfV57AT4nRMDlLQ1pVGe1ziYB+P6WlcNllafulZ6Kn96MlkkGA5nfirK4khGVauQU65BcozMz7Bp8SZ1LlePjsMzj5ZBGPnngie7JgOu3txFI2iqrqjEWpKs+170g0CvmLSpgNhFc1AyKRLZCfZudm6KScH8xOkbk+xtW9TbrCZicep90M0m4GIRKw5Zczx/2bM4vuFtPYhz2beVwk4mTnZ8Hwu0T0HJJNW/gX0HIka4Q+/8tZMgUiJxuFfnQWGhs8mWem6TxQK2PezvQGwQVOAcZfGl3vWSb6jjvCPfeIz8c7HrE5R+QHy0h9qlhM6nNPKSiAZ58VvblsAw3uHlZ3IvkvKKJn474t72CDbTfPLaIHAnZH7+WWLe3VPqVn9kWA01F0/53a2jLtXHKJ6K7GtXvWR7aMM3c7POh3ZZJl8RAXIrr4HFCjjohu5bZW74542OWJblg8UbMzjzfuAg15PLAUpk7txcncmX0+H7tN+JHdlt8tlme8SqpRIhn8yNjdA7oRpNJt2Dx0Z9dSmTnrRSIZ7LgLdratSM6z1nVCMydD0ClMnlGMO/ks2lOzVRWwIJGgI6pjWUnt6v77WRabwh11BwBwzHw/GwOKrtnFgt1h0CuiO+vHFTcyrnkx+PJ6XXsEvIPsKQHfnRDQpRtbS4tn8a652/Pgj2eDonLXl6Lu++j8BrbL/wJFgdK5TXD2H2DiRHjoISmkD3Jk7HbIsGJz/23S3iGWJWZ+p6wmT1h8odhg5IjjispmoR+YmfcNH7ZvwJHbLeWMx0ZmauSDMSlMIklD9Tu6jWklH4JkO7eywmLO6KvFuplnwonXJ3c04c034eiju7+A285FUz3SxpUrjyUSU5kQbmA2EFlRDwwXt1Dq7bcKsV8844kOEd+DQdE+sCxoa+viHhIJux6SplnOs56KqbmmpUUidJqZbf49it7l0JJXKT7oZuf+coTnjqjMRB+o9FmFU+SIa5ccUPwmTzXtKBZcAd0d50emqhwnOa7suZ/j1nqGqvZMRF9/fbj8clGE5bDDnPW5fh+DpdFx441wyiniDX3EEb071jC6HmRI9fS6G3D4JTzRh4vgtWnoBz7rWM+z6bLlv+Yx66vcxwYCWe+500oLQKPH5J4K5vIWTWG1tIrR4yTTg/MpzV8v/UgAnnvW5N+LLqRIa+OE8mfQMEmgksjSsfVkovvdneDMjoyYaSbWB5SI6+ff90z0wlCcY8qeJ27pbDAyn6+Wpm4yhzdbV7g9Iv1+74tIGqsOKWTs7gHdiFET/Muo0BtZHS/JLAQuRXSJJIMjJn/CIbGH0DB5qWVrXmreCoJBggU6BAJ82D6NqGkQ/KkMTxWBZM2V5c1J/zbNEdHNhGgupZqV7oywQFHyOdQ0DCUuRHR3JnqLo6gHg654mHp+e2gJkU42O5fqQBOT/EtRQwF0fWKuQ+msa8c9oF0fTn5WFFtY2GXE9+zS/KRoC92RvNa8efDVV7Dxxn26Z8nAQMbuLnC3Y1udGR1xS+PXiy5mUXQYfxtxC1WjXH3QvMzkkR13hO2nd1B2UzM3jrqOhZGRTD7xlOxd2sHSn5VIukD1uQp2plygU799t+JdX+89sKcd1Y4OLh52F3+qvp/YGedQXLWXvcnQLCIxJxktUuOkk/vLvPax++/cwsz37kZVTCoMMdtdUWC99cT/uyxNkEiQSInorkKqWRP33ITDHjuXFGN9K5kWXAijnL5ErrzHSEwOfg9U5ByCtcRuRe85IroLd5wPqREeHHsR34QnsGfRO4SyeED/YmhaZgMhl2i76649P+9gyZSZMQOeekpklvelamQurrkGzjhD/O2PPLLrfX+JTPSxY2HUKPQlWYTX/IKu06xyiOjuAHTr6Kt4YvadHPrtndDk2umqq8T/0wKaacJvHt2FloQQ0Uf5VoliuzPnZL2Fz79Q+LJzEgCHlr+OpiRIWCrxeGYLORpz1rkz0ROxzIbB+PFw7TZPE/5qHmN8K3mzM5lp349M9PKiGKdXPiYWJs3mmw8c38Ze1xZ1CwI+n/empIguGaJkTAlP0U2c0pUE94/9C3PDY9gy/2tnQ2UlbNB1wWQpokuGIr4CP75kGzdiJhMEdF1M1AyFOGPpWcQsnclWB48UPohlQauZR2FHB0SjfN6aFJ9VlePHvMFusf8QCoGuPQ1LlgLetkSoxBHRC9QOOk0/TW1OmymkdLJn0Qd0mgGmjnTNCk2J6LGYCLS9bLN6ascn7VxOHPUiJ+Y9DMOGwegdch5bEGvALaIvby8WHxRXTkWqDZUuUPRR9JdIBgXu58FVUfDdto34PjwWgD8sPQv08ZBXKxJLSko9pygtFV0wWjS4CQwlwZTAYpgwPvs1ZZFwyRBACzgJfY837kJdvJjAB+M54mC8OtGCBd4Du0z9dtHRgV+N4ScG1Qa4ZAKfbgIa0WQfPbKqyd7mr/BaMU3fwGR60ftiwZzEU0/B3LmiNNHBBwvXs5y4MtF1VwFQO972MhM9ajltnPRTZZwipuJMqZMMJKSdy1rgpMXncXjpB1m3jRnhVdTWDy7CUOJ83D4NBYuNQ/PWDUuXbIVFeyuAb7UVvP++d10ur/SBSBfWJn1m221FcaySEtGi64pfQkRXVbj3XowpL2Zs2nQTq2t11++3f0OXDL+Di1echIrF7oXv2bvMyP+OGTcYcPB8R0TfeGPYeWcAvmkfx11Lj8Wsy2PvV6CqCr6qqQBEsE6NJOdSrj/9wvkNjyhoQVcSRC0ja3yMuO1cAs77Ltu+xcUwa9hcWCye+//FUnY1fc9E9/bGdZSUX0wfCop9/jn8a/kp6EqCvWoVZlS4ai9IEX1IIWO3Q/qU8HH+5SyJTnFV78tNpdFIpZHMijn6aNhmGzGa1t0MovQiZhLJUMBlaxhOzT5LiejBIIYSJ2bpxKMiHp217P/4X9vG/HnEhxzQ0cH8yChxjKqy57jvGLN4OSSAm2+Ehx8G8HRmgyUB+xrlehO18RKa2nRbFx9e0Molw+8U+8w8yT5uSbSaRa06cUtj45oopcN7Vwg4WyZ6tx3xJLOHfc38ss+5p34fAFZ1JDPtXJnogyYRRdJrZOzugpThcSJhz14BaEqkeZ7rGoweRbZCobaGld5PHTUq+zVlJrpkCOD2RP8hPJYfwmPxvTiMI67D295dtgwQli+qYnkGs7qk3aV5hUKeTaIemUE4roNlEV6dnGWiqvgL02JzSYnzedUqPqmFV/4TgbZW9pxhUVzcRds7kSBOSkR3Vj9VszXvLB2NWRvg7GVZLN5zZKJHbXsa52S5JJuoqWN1dKLkhbLvIFln6bMKd+ihh67J+xhUzA2PoSnxTdZt40dnKmpPN83in42zAbhv7CVsEFyQsc/PjqZlNtZ7K9pefjm8/bbI6Hn5ZdhlF09HSpKDnppd/xJ2LgDFxRhK5u84VOLvWt11ZaLvXvgeITVMld7gCFEgAqiqesX4fGfKVmO8gHfbNoKwzsZLoboa3F4sK1J1BnJ0VlfXiVZyqdbCyJJ227s8nmX3zojz+y/I69oTXZzE+ZvYFbn7kYnuOdDn83i49zYTffkyi1eSPvTTO+ahropz75JzMS2Vg/+rsdPhfbxHyYBDxu7c7Fr4AXfVTcn5HhthrM5+oKLA5ptn35ZOWVkf704iGcC4OsdtyZljtoiuaRiqCSbEOuI0xgt4u20TAK74cCcO6Ojg1MrH2aXwI36asAsjy8OQqrGYFNABwqYjagXLktfTNEp10Zk3TWhqSuYnuH2TXe3Sl1ZuxJ3LpgNw87cJthYOdliW6Ovne2eQZ5AtEz2bDV1WFi/miNKv2a/4LfK0Tq5ddQwvdm7lFdFztfvSveQlgw4Zu7ugoUH0NYW3ok1zIu2BVVWyCegAO6QmiaQPhOfq+8pMdMkQIK9AYbhRh4rJspiYSRlI/vRNzeCwhVcSs3QmrVjOrLyPuarmGPYvfoszmrO0l//7XxFId9/diYuuQa90i6WAT3R2I6awuo3UJ7PbDSNTTho92qlXN28eTZUWLFsK0SiFN94G9/4995eMx7Nmov/YOVK0RTo0TmrNcpw7Ez1lvo7Q9dYLLGLKCoMxRWLzhJIGzqx6mOtXOS4DuxZ+gF+JkmgqQ5ci+oCjzyJ6fo6WZHt7O3lZfMaGGosiwz3LFXojhpJAUzOtP9xB3i2U/aKoamZjvbcZMIWFsFfS22r//dfMfUkcfikRHXirdbOMdb6Q7rUymDQJvvvOWfb77aCpKhY7FmSpQJp6d7hFcNfvzu1VlkgkT2c6+87I+1Z8yKZcmyaxNjGdvNqoh2AQLfm8JRKZjer2sA5YGEocf8DZnkggAuX33wuTtVRD2nXPtojej0x0M5bAtDQ0Eii6jmIXJ7N6LaLHXEVKfX6Fhmg+H7aLf6vtVskpZEMJGbtzM9pYKT7kELs0pY+zNrbZBt59V9hhyUxSyRBkbtsI3lx9IAlL5d76vcVKXbcnZhi6CXGIRizaTFdn0jThmWcY7VvFaN8q2GYYNGRPxri7fl/7cyAv2T7SNEq1ZMFOS9i2ZojoLjFM9zvPZ7wjCuRRWytK4CxdCpddBrNn5/6e+Vonw4064pZGMG+0fQ9A15noP/4IH3xAsW5RnJxZZxdxUxRb13tp2QbcseBwEpbGGZWPsFPhJ2JD+zowg1WyVpGx2yHDis00obaWBBo10QpG+ISAtzpe7D2wi/jr+fOeey48+SScemrum5AiumQIsOPGTew48RIAdv/xJlbHS2wBW/XpLIoMx0ShQO3gomYxq+uhht05rXEOutum5OOP4ayzxOe8PDFqZZrw4IP8u3EWDYkijFeqOXoT5xC/T7TFw6Yfq66eKqWW3QvfI1I9hjFjvCbntfUadWXbEl+whAmLVtASb4VoFBWLvK/eF7XWqquzf0mXJ7pbRHdeFzlqkUUidJipei2arT20JPI4b/mpnPGBwZj1xeaRxW0cUfo2d63en1YzxGhfDZePuFVs7NgZqMr5byBZN+m3H8Svf/1rttlmG3bddVd23nlnNtpoI3bbbTdOOOGENXF/A4Jsvqr/ad7O/vzrsv9wauW/xML6/8o4/sWWraG0DBrqsXKMkP/saFrm6Lvs/Eu6wAjqwiv++ONh2TKso46Cw10pzoFA955fqVasWyV2DRbYP8Gkc0w87t03bmkc89MlbP7EcE7fyXtq8+JLMJeJTB5dSQgR3c5Ez7yvtogOxMhTO72FVRIW3H473H03bLgh3HMPK1Yq1KwaQaCzidG+Gk8iSyyWceoe8d/3DM754V4ULE7/ajGq8o393Xs7qzfW6RL4/Rqq6XxfM1tVVcmgR8buTLbK/5qRRi3LCibAatEJL9Fa6TT9hC2fPXOl11x8Mbz5prDrkkiGIPNah/GPOq8fuC+oMUmUKMHQRVCLWbqYbZakXG9m5cNvcM/K49ki71tmT51Kw2eL+KRlJv9q3IVO08+hJa+ySWgu9fEi+zjbkUHTqDQaKdVaKK8OEY8Lm7zm+jgFqWnnrpQ23XCJ6MnB56eegkWLxLqnn+5aRD9k3MccsjpZk2Xm2+L4mq15dfEkEiuDnPMj9nf28PnnGYE9lRnnzkRvTwRYGhWdbc80cnc2n2RQI2N3phUbgLViJSf8bQrfLLiOQ0pe44TyZ6jSG9KOdNq+hx4KkyfDvsmxN09yyiGHiP+64hdMZJJIfjZc9kbhZNa1HTINA12JErUMxwcc8CsxtE8+FAmUt90G770HV17pnPOss+CNN+CllwB4smknfgiPRXusjGP+5OwWSNYjM1GI19SxUehHNgr9CDvtBNv8ynObDz8MD392BjQ18Y8xf6Xlx1r72BOXnE/bgRFufErYwGYQixG3xOC9W/pyaw5Zx8AjEe4acyPtZpAfS2fy508O8Gw2Aq53hKZhWU7cDvmzF0OWDBz6LaLvtttuHHrooZx55pkceOCBXHnllfzjH/9YE/c2YMgWzN1MCy7s2Ykqq4hY3fip/lxkKyz6S3hwS3LzCxah+F3Fk9y2+kDPuqV1SZH8lFPEipRHYYqeZG2ksmncrVnX4I17VNgW0ZP9zr2L/mcPXlXUZHoVxp9/GUiJ6HEIBm1RLFtw3GXcAuqalorGgKuwSiJuCQEd4OuvobOTl14Kceu7x0A4zPWjbyKvJEqJ1oqud2+RnItYOJH8pgqaTxedfdd379W5Is4BRkBDdVUDN+PSZ3MoImN3Fs49h6fWK+aWNxQeuFis2rv4bXxKnIhpUKL3saFbWgoHHtj9fhLJIMUdQ1NsvbXThjGSzcs4GteuOspeX9fm59Av/0yHGeDfnbuy+Q7j+YFVnHdTk91OuGTlb70DXKrmxEhN4+SKJzm54kk4+XRYfywAf35wfb6c+w/G+5fzD9Ug1TqxLViAeKcYAW9uBuIxiCf45BM/uewgxEHeWiYAyyIVfNwxFSJa7r5yOMyNqw7n686JBNUIV4yY4xHRU+0IxVWvwcSV2CIz0YcMMnZnp2V+Ld/8MA0QBRAfb9yFm0Zdx4y8b/mofRpo3j7sOed4j+91npjbv3ns2N7fsEQyEHANMqc0qkBKV/f58CkdRC2D+RHHMHxacIGQKJYtE0kkn32Wed6dnEy3WNJD3Ah52wl+V1c+UtOIvTXLrBxNw9YZTBSal7UA4t4/75gCi300N3choqc80V234MTb3JnoFUYTFTThG9UCn3g3O7PSxQ1aKJxW+Tidpp+SESFI1V6TIvqApN+qqJ5sJL733ntce+21AIRC0tcnRVCNMCubbUU2ykqJnHYRvHhRZpXjFD/XyHc2EV1moq9b/IIi+tGlz9OaCPFQw+72unmL0kTydNG8J3743Yjo6XYuX34JWBbDjTqqDCfjJBJx/W0eeABee80OkIDwdA8EGONbSZ7aSUnpsIxbOX3z92HV8wDE8nbk5lHXomJSeuA5cLlrx2iUcDhkZ5EFfQm2H/kZ+0SfECP4O/2v+++dhbjLgsXwqyiuf+8eZaJbyXR9TSPW6bJzCajgSlpLxGUm+lBExu4ss8j22AO1uJjiry3w+SEaYYPAAscyQSKR9Ak9lNaeNAxCZUHXoghqUTNTbLczrvPz+e57heEbV8OUamhvEwp3c7MjOAOFU0eyySapC7u6OannPB6n5bP5RKyxzA2PwVdQ79ynz2lvJCIibrbXh2H+IrBMtLEjgUxbRpssInr6DLqsxGLMj4ziy06Rpn5f/V68257KyHcy0d1dgKZEAa+1zKAxUcDY7/LYIvddSQYRMnZnJ7poBdSs9Kz7w9Kz+Puoa7hl1NXM+Omfa/aCPh/cfDP8739w5JHd7y+RDESSmegJS7Wzzf3BZFAzDHxKDPAW4602nJiaVUBPI2bpMGkShs+rMwUCTmc3sqoJWzrPIqKrKrbOkLA0OhNpGkQ8nnusORrlL8PuJGz5COx9CCCKCduaQ67Y7bKFK6/WeWDsxTzXvB2PN+4CKBg+p98etQwa4qXsVPAxITVMySZT4cPkxpaWHDcmWZfpt4i+ZMkS7rnnHlauXMlWW23Fl19+ycKFPcy8HsRomCRQMa3eCM8K5qQpcNxjsHBh9qlkXc0jXZOoamYKrZy6tm7xC4roPjXOGVWPElQj3FW3HwC7/CrtftIHYdZkJrolLETfew+wLE4of4bdC9/lH3ViXmYkmryXtjbRyAViluMZaShxCIWYM/pqseLAI4ANvffi6gwbIYOt878SC6O8hYuEiI6tbAf8lnOjvU0ZdyGE7+TofEBDUy1ULFQl0b2IHg7DsccKgeHOO4mGTUhmrRkBjYTuykSPSRF9KCJjd+5ZZCNHKWx5wDDU+jpKlvXRwkUikdhkZKLn5btnidvNzahlcGTpSzzcsFvmSQIBrrwS7r3XOQd5+cIzraODDYILuOi0Rsr+b6qTJOpuh8yZA9tvD8uW0ZKsRVSktaEEnQF+ze90i1KZ6K893QqWiJMPq0cDz+T+oql2g6ra7YD0GXRZiUToMCvsxQfq93S2uexc3JnoK2Ll3FwrZtft92WjFNGHCDJ2Zyf6xLMQ3jpj/e+XnsP6gUWePuy4cWvooltvLf6TSAYp368q5R9Lz2BlrNxeV1KS/KDrWW0OR/tqenWN2IhxoBsZslNpkUmV3kBAjZKorce2WM9SA8KdiR61DMz0GWNdieixGNsXfC4+b7SrvdqRWXLE7kjE/ugrK2Bq8Ce+6ZxgH+wew5/XXMVx828A4PDSlylYMpEn5h1N2PJx+/crmLp3jnuTrLP0W0Q/8sgjeeSRR3jjjTdYtGgRzzzzjBwRR3guJyyVniSMXjzsLi6J/InycmEpDXg8qNB12G8/UX387LPXwt1mIZsPhRTRJWmcUP4MrYkQJipHHru+d2P6zIXeZKK7/VVcvzvnoyUEdADL4rKVJ7BP0X9RsLBQHBHdNbr7ROMu9udUJrpNNj8Xd0aZuyOeHkkjETo7cUR0n7lmRPRwAreIfmLVM5xY8i9hqDrz0a4PvvdeZzbL3/5G3DyZlIiuB3RwTTEzE9LOZSgiY3dudtoJdtopBIyGPZZD7S99RxLJwEYLpg2qh4IeN4TCoIi3JgrHlD3P++0bsjAywntMIEAsliUJbfhwWPgTdZQz/qTNoShtm5uLLoLttqMhviUgRHQCjnjtzkSP//02ajvXJxrf3143xufNdE3n8YWb8cHSXdF1izNWiMt3m80GYjDe9P6NNg99z+mV/yS+3gYEAsJfyt0ML1QdRaCxRc4UHSrI2J3Jf5q25ZbVJ+bc/n14LLhmvhx99M9wUxLJIKAxEuK/bZt61lVXJ/uQdia6lxeat6Fcb2K/4v/26BqxQEHqdB7OO+AHqEkW32zfgz8tP42POqZRdFc1dx+cLBKeRNMQlk26QbuZRW/oJhPdxtXfd8dbM+4ko6XoaE3wdMOuBJUIY1snsgk4s94V70Q4TXf63QlLI+wvoiEhZrWFm1yFziUDhn6L6JWVlZxxxhn28kUXXdTfUw4KNCUBluH1LMzBXkX/Y8quGzHsz8c5L5Bhw+Coo+DTT+HCC0X1k5+TbHYuUkRft/gFM9FT6EqCs6sfEgv+07veuScierbCoq7v6e6M2iTFa0URxUzClo9wRIGVK2GffQDoNP0eD/f9i9+CoKu6V1rPNhIBOk3bJ9XzLKQL7uGwyEQ3k3YuAct5VrJWIukZUVcxUCOo9U6Yd9tBLVlCrMIR5H1BjYRrgEMWFh2ayNidm/Z2YeWoaVAazac0XUU//ni4555f5uYkkgFIhohuGJ5ckYqCsD0IftayMxgZrPeK6AUF4PMTF+VMUFVXKDR8MHkSNRZssY/KJZfAHnsktw0fTn28iKtqjiVs+ti4bh6zppcRtsT9FGrtoDt2bm5P9AQaSx54C1SnWJimdB0v5zZV83bbhqCqnJSctOb2Ve1KRO9I6/iX6s1MDf4EVRV2392diV6ktdmfG1vXkXpKkrWOjN2ZXLfqaDSliz6q3w/lTiZtevdWIpFkR8Ru1wxsw6BqQr792aemieihEEs6qvnryhPYq+idrJnq6UR9+RDNUkPMPWK+ciVNiY1oSeTR0uSdyQauvD2fj84cInpbq0XWmiY5RHRPDZIsInpjk8L1q4SV0+xvLTbB8Xd31zKBdCu2fIblO9n0kWYpog9EZKXItUSqMRy3NO6p24fjy5/Nua+iwOTKJihI2+BqJP3sZLNzkZ7okv7QV090V+RR/cnfpO1nYuFW1P1qlHDCRySmiMGnJO7O6ayCT4U1S3C6c43PPxezPPbZB7bfntdfh4sfO43K8L78X9Uj7OQL8FHbBpio5M8L4DoSIpEMO5fvWkbyyPJZmCjs9raYQd5b4hGn4aH7def564khurtISUEB0bBzjBHUiRqysKhEkotvv3XqIx/fuQOnuIuDH3WU2ChFdImkx/gLMkX0xYudxT/O+pAzO15h53m3ienQeRXAameHkaJoWTwu2swZYrSigiLCY73LjhVdJ2GpvNG6OQABNUrHh2XeYydOtD967FwsjfUDP3HGNl9yz+N5nFz+ZLffM54K24piN13cg/85x9WziOh2Z9yVzubuiN9Tv4/9eXlz5vR2iWRIU14uHriiouTsbkcQc2ewSiSS3JRUeKVCZeIEJk1J9iF9PnREUFOx+Me293H8j3+CDlF4a0m0mvH+5QDELI3/W3oWdcFR3HhxI589s5SH3xnNsePfoSUqUtZsm5gUbhG9poaWhIhzhk/JkBRsiUoXQXKngk8Imz7q4sXMi4wGy6K9rhPInLVjhqN81TEZTUlQWJ/PmOR6TyZ6llnbnnpjeQavtszkqcZkwVRF9WSiu4uMvtKyJbw3ElgGQLxNiugDkX6L6LFYDCNj6EjiJtErX/Q1TEoJ6C0yE33dZx3IRO8Va6CwaFl+hENKXksW7bA8gvIHbRvgT04ri0RV+OILe1vEVaysKV5A1NTxBYNcv+pI5kdGkliscfvoK1Deegt23pnVxm+w2mKsohQVEwyD05aeC8D0x0rxyGfpdi4BqO0o5qWWrQCYPN9k++17/w4Qdi4CI6g7/949EdHbnAw18vPZIL+OjqKfiFk6JaXT6HCNrlumFNGHIjJ258YtdGVk0ci/mUTSa6aul6Z667onTIWKDK5P1lcBoLAQ6lbb+6YEsD/9qftrTZvmXfarTpZZxDJYstyJxwdfuqGnrWsENHQlgYaJgkWeFuaose+w+ejP+SE8lnvq9mG/JW2Ujs4sbAYQi6fOrdindeefdGnnYnnb3JGUvYurJ+7OjGtOOPfQGZHt86GCjN1ZioJnIxQSNRPSeOYZGDEiy/4SiSSDMeNUe5bY1MBPXPzYVKemgK4TSMZXTUkw8agt2fvVJv6THG9uiBdSGyvh9roDxeB4WTlUVHLAPyDaHoX8Zs7rnAUBEdcqKtIuXuDKLq2poSkhlgsLMiUQW6LSdQq1Nq4eKeqhfdQ+jVOW/BGAtlXtZBPRo50JfrP4AgA2f7SM2w8W66eWreKgktdRsagsGw9437vRDq+IftnKE5zBcDUtE11Pu2HDNWAvRfQBSb9F9KeeeopDDz10TdzLoOGFSb9n7/n32suK8jOJVOXlUF0N224rjBijUdec1l6iaZmZ51JEX7cYaCJ6bwqLuhvGrt9hZVGEc6sf4J22jVmR1htdFS8joIoiH5GYCq7LpSqKA3zROZmvOiexeTDIt53VfNkpbF1MVDRMeP11wquLgP0ACKoR1KBzsgz3k/RM9KCC5sr87qujSyziXMgI6nzUNpX/rloPK1LCfvO6cXhKy0TfffJCdh/+D7E8/BYSxWGOLH0JFZONJ/5MxYol6xQydufm9dedz6/Vb8KJIx5wVgxx8UIi6Qv55QHOqHyYG2sPFysUlZNOcu0QDGIoro6k3weVVdDSDFVV9updkzW/Nt7YGScvLYVDD4XbbhMJ6xum1Qj3H7o/XCY+h00/K1eJeeA+Jcauh3k903fevJmd1zvLe4KaGp5v3pZHG8TFN/+qIaeI7s5ET70qNM2ZOSey2TLbbmYkRqfpbSO91z6dF5u3JrhyCrNInSvrZcGUBZCHCjJ25y4K7iHH7GkZwiWSnuOvLqHaWMDKWDnL/OOZMMG1UdfZOv9LJviX8buKJwjt8S8mLmsHRF/85CV/9p4sGcCiUYQNW5pq7nJcAuC72nIeWn4KTYkC9i36r52JXlSceZ/2467pmK7k1TzVsaJpr20H0pX6tJnfrozx7UYsZLtlH4qFMSd0fVyeH58SowMhouf7op5c1HQRXTV0Ur18KaIPTHolos+ePZu4q9ieZVksXrx4yAfzdEKurBfI6r605hk+HJ7NbRnTazSti2E+yTqBW0UdCNXheyOi58hET51jRaw8KVo7v1FVsZxM9Ajg6uO6RXSAmlgZFBV5skwXREYyObAEwFPgK6BGwedDxcJEyeyrhsOEO03AQlcS6H4NzfVmTcQyfdR6gkdEDxl82zmaxxp/Be0+Nl/WjYielome7vc2qqyD/6t6RCxPm9nre5MMLGTszk6ubDZXPWLaE2nvLV264Ekkvcbv56iyF9kq/yu+7ZxA1ZzrmTrVtT0YJG65vVUVKCsT/yV54gmnGXraacJRacst4fDDRXNg5kwYMyZTJPP99li4TBQEjVgGNc1CRK82GlCL0xX3LO2UBQso1ZyOd/2SXNXJXJnoinMfiqstnUtEj3SaWFnWX7jiZIre99si+uTyBs6pehBVMbmq5lh7v3BMx7IGXm6FpGtk7O4HOUT0POl8JJH0nFCI8q2nsPJri5ayMuJxVzNYVTlhw49RVq6A9daDsjLKxqpAW/ZzdVPTa/Ro73KzWSCsT4Ap/sX2bK2i4sxn252JnnD1ufPGV8Ei8bmtJplgtmoV/PWvMHYsnHkm8bDzjtV9Lq3LrXtlyYhz1y7zFfjxKeI8FXojL+7xD9jUSajVDO89B0IKHcniLrF2r24oGRj0qjd4xhlnsEdaZvOjjz66Rm9osHDp8Du4aIVIs1EYgHYJ2Rof0hN93WL4cLjsMvjmG1Hobl2nJ7+fsWPF/3OJ6O5h3TRbE8vwcUDJGzTGC/FNHg8uX1S3KA5wZ90B7DV1GJryhb3uiJ/+ys2jrmXr/K8IW05HOqDFQNfRlThRy8iMo5EI4Y5kFroiBHfNdcuJPnqO77/+D8z85l3ilsakiWfxnf1Fe3BwWia6GFVI4vd7e9o9sYeRDGhk7M5Oj7LZ0pFpbBJJ70kqVxP8y5kQXAnpY7eBADGrw7PqgAPgqafEI/fww07zAEQm+s03O8uKAhtskP3SalkJvrJ2ovUttCeC/Cr0LquMMqry20Hd0btzmog+LzyaxQuG8X14nL2uocbV4U1TrmOJlIjuZKJPK13JMWXPowCjR04m26B6Z3tuccHQnW2jSto4tPRVAO5avT8NiUJANJliMVkwcbAhY3c/SPYd7rkHbrwRvv5alDSRIrpE0jtC46qgVnxuaIDKSmebcsP18PbbsNdeAJSOLQTEoDV5+VBUCCtWiGW3PYuLnXcWz+Xee3vXlwwLACKrZUm02l5fWJopXx5wAOy5J6gffEfwvE/s9aXbb8AxXz5PvtrJlKoJwIbC6njxYnj/fdh7b29Guc/VP+7Gi82T7Fbgt63jopaR0ZZwZ7gDBEMqHaoGpkm8PYJk4NErEX3WrFkZ6w488MA1dS+Diny1o/ud1mWyZZ3LDLx1j913F/8NBLoS0f/4RzEokEqvzlFY1NNDNC1PQlde0GSf0BtiYeRGUA/tiQBnLDuLzzumeC4XtzQoKLALoqS4eMVJvDr5VI+Hut8wQVXRlQRRyyAWx0skwuP3thPZ6bfiOGN6t8VIesLIQB0j874VC2VGz3xVU7iFcU1DmLYn8fmkiD7EkLG772QkdkoRXSLpPZWVcNxx8O67cN55mdujUfYq+l+y3gmcdRYcdhicdJInGb3P+H0WUSCByoXD7hYrx4wBfu3dMU2FfqVlS+6r38uzrr42IWZ3nXSSqGJ6663w009wxRVEo78VO7lE9E0rl7Fp5WdiYcIfst+f2ckpFU/Qafq5t96rJBi6K0a7GgLtZtBZb5l0dkoRfbAhY3c/SD4rJSXwj39Ae3tODU8ikXTBTz85n595Bn77W9fGiRM9xbkLSzQx4t3aJh4+QxfJX5rmqY02bRp89x3ce2/uAfDi4Y5/+eLoMPtzUXmmHhUIJE8/qpi326Zz9apjCChRfl2+IadXJgcilZlQszOequarVpGIOB17zXB14LsT0e3aZQpG0s4Fsovo6XYuwTwVNBXiEO+QmegDkV6poqFQphm/T7bYMpg19w7+OuJhe3lAZqJnmxMqM9ElvaT9N7+h6P77Yfz4zHlabg4+2Ls8eza88or47DI4XRkpZd/v7xcLltcmRfdrkIpDyUzsG2qPzBDQARKl5aCqaIo3KDYlC3W5C3wFjARoGv6k11kkmvZsrFyJGukkqEYIqhFh/aI5+wg7lz6Qlj3uPJJW9yK6G9PknOd34JO5u2IocZ6KB8hXVUxLEdPHYybSqGlwI2N37zjqKHgjOR73h7HPgPt5kyK6RNI3TjtN/JeNzk6mBn/ir8NvoyFRyEEHXY6irBkBHRxLtyXRauKWKB5Kltkny2p0Hqk5hrilMSPvW6dImIvGuoTwlvn6a7HiL3+xDdrjVrJbpShO3kk3U8IB8sxWji//AIDPOtaj0/QzLyLaTH4jM6kgYalEXDZ1o40a4vHMto5kYCNjdx8JBkn5Kubni+6rFNAlkr5x1FFw/fXic3rh7nQKC4FgSPyXoriYc8+Fd96B996DXXaBv/0tYyJXBsXDnIHixalMdFWlsKyLd2BpKctilcK2FVAqK8TD39oKS5YI5d5NW1taJrqjKzw6bzNu/uE4TEvlyjcVdkobv4yljlMUjIBm27lETF9mJrrm1QIDQcWO5/GYJfr8PbG9lawz9Dm1+PXXX2fnnXdek/cyqFA8nwegiJ4N6Yku6SXhgw6icJddUMaOzT0Ik2392WdDOCwKiv3qV86ufgMz9XRZFriK9uoBHaIiy/zDJaOYGGvi6aYdsl5SmTAe9FY0xduhtVBYEBlhe7ABBHwmKIqYppWAcFT1zsa++25wT6/1+TyTNuKxPj7/bh9zvx/V9V27TB5P32iatHXqtJqiQaMHDb5fWczRP4jBiEMe93HuLn27RcnAQ8bu7pk+HW66CTo6YOfrv4DVro1SRJdI1jzJoLlb0fvJ7LU1e/qI6QTlnyLDmRRYmlVEbyibxOONBYBFQI3ahczc1DcosGyZsyIlpgOxpIiuKpbTtOnJzC9XvL97rKiCuuUP9xK3NI+IHjEN6qIVdjwH2DLvG24Zcw2UfsTPVIVJ8gsgY3cvGOZkreZnrwEskUh6yH77QV0dVFd3X4KtsDBz3aWXwh57wD77wFdfiTY2dF/DIxBU8CsxIpbh1AzR9azXsKmqoqZyI1gFDBtG9TBFVBz//nvhhb5qlXf/lpacIrqlqnZMz2bNGkuFbVXB8Kt2JrqJwsUf7M4ZjaI5A5DfsoLflj/NXXX7gaKw2WZwVOQ19G++ZGpwoRD5pYg+oOiziL7YPRVCksHLLhEuMVDyPKdOdUbosmQ/SBFd0msUBaZM6XoWw047Za4rLXWGvV2oflfPuq0dQs4ote7XiFkat9QeysONe1CsNme/XnkFl15hCIsWMrPCTl3yR89yarQ4VbQ0GlMgPc51uOybDCO3nUs0Cs89J7LyN988+/0l+W5FMQ1tG2EocTbB5/wJrW7sXOJpfjOm6bGgMfJ8vbOGkQwqZOzuGdtsk/xwQ1rDWdqaSSRrnkMOgQcfFIPnV1+9xk+/4dhWvk56uo7wJT9kSU3VK0pgrB9aW4mbmu057qahKa0948ou36XwQ6YGFmJVDwMmAGCpGglLw7QUtGgCLUvz2hbRQyHo6MC0FGE7B/gN5x30ZW01pyy4znOoX4kKcV6aog9qZOzuBUl17txz5bi3RNJfQiE4/fSe7ZuXJyafL1woljfYQAjoIOxWZszo3bVL9BY7qxzg/M1eZtq2EzP2+/FHYc2eSCi8XnowTE6ApjNsGCRKK2hPLKEjFqD6xx+9BzY3e0V0v9OBzywK7sWX6GSkUUvMF6KwENsTHeD5BVP4nWtCubp0MSN9yTaHz8fYsbBXx3JY+r5Y19IC5eU9+ZNI1hH63Bu0pI9ul7zbtpH9OdUQXue59loxRXXrrbMLBVJEl6S4/no480xn+aij+nae4cOFH3oP0fyu3+XqWs+2lYlKLllxIi+1bAWYNCUyO8h7FL3LnkdXs8UWe0OblmHnAlAXL/Ys+0MaqKroqAKRmOoR0aOmzlWrjqVMa2aCfxm7+rwidcIdeB96SPingsiwP/dcZ5g6jfu+2pQ3lgpv1BfCAc+QfZev33icueExLI9W4FdjTO/UiSYtaFQstJDfM/ovRfShhYzd/USKVBLJmqekRAwwd3SIdsEa5owDlnL/d0t5u20T9pp/I+V6E4/lfZ6Rt61piGnouk6iTqU+LrLVfUoMFYuw5aNlWQs8/njW6xxb9rz4sOmmgJj7/eyi6Vz2w+8AuOB5lf2OzDwu0mkSTuQR9OVhxBNEws42v895ZytZEhLsjns0Kt9PgxgZu3OzQ/6nvNPunnkqnuxDDvll7kciGaooCjz2GFx8MXz5JZxzTv/OVzx9DDWfttnLG1XVMH5y5n7z5sFtt9l3Yds5FRXBkW+ewPwFv8GnxHjv+795D2xtJR51OsLuTHS3j7kZz+wsb5//GdtPfEO0WfZ5ltcVV8aaonqltOHDiVvJ+mR5eWKbeyA/aUMrGTj0WURXupuDMYSYM2cOc+bMIeHKRhntq7ErCW+f/9kvdWu9o7JSVCzOhfREl6TYfnt48034+GPhMdbXluqdd+YUkbOhBnJ3EKuLw/iUrn+jLzRvw6Xrfy7a15qWYeeSzvb5n6MFDJGJnuyoKliYlmLbq7zWOpNnkrYxW+V9za7GYopDEfYoehcNkw2nuASBlIAO8OqrwgMtS8Y9QMxlA2Pk+12PXzee6PE4zzTtYBdoe7Dxv8STX1NX4mAYHs9205Qds6GEjN39JNsAsxQ3JJL+U1ws/lsLbDQtzvWjbmCPH2+iNl6CTgKlMEsmeurxNnzEJ0yh4QuRiV6qtxA1DcIJHx3RHiSUuN4Titp1NhvA6yunctG8I8EwOHfUP9lVf83e5hbR03NZ9i76HxsEF4iFSER6VwxiZOzOzX/bNkNz/3kUb56PRCL5+VAUYeGyJiiePhq+mm97p0Ss7DpALonK54O8AhWwiFoGsXkLMdzviuZmEhGnU625M9HVrkV0ewZZ0oalSHPEflTFOwvmpJPY4cMzmTTxLuKXXMGIiUCdqw3S5jpWMiCQ85LXAKeeeiqnnnoqLS0tFCU9FquNeltEH+Vb1dXh6zY33ww33iiMrGQDTuKmoCC7FUtv6OXAjNvOZeu8r/hj9f1cVXMsY/0rmTmmhjff7aJ4aYpUVFNVtsr7mheat8m5697Fb4v5Z6rKnWMuEx3vP/8J/uZ0ai9acZL9+f32DcG3kmGFDVw6/A6xcqd9c9/L22/n3BSLpZ43UbDEbefSpWYXi3kKjvmVKLG4ONhIieiqcwLTTF5HFjWRSLpHDiZLJAOPvDxaEyF7plml0ZDdzsXVK4ru8CuamsKwYCGlWgt+I0phvF0c2x2uE3nqimbxVQVojSZjr6Jw36rd+WfMaZf4PJnoTjv86NIX2CQ0l+ebt+Wdto359ecJpsv6JhIJKAoHH/xL34REIukvIs/OiYGtiWx+aNnNElRVrM8r0gFhydphBijS2p2dWlpYL6+Rt6f8ljgG+u/fdM7pc05qRtOsUsER0ZMzwC4dfgf18SI+bN8gMxN91Cje+t0/iSdUiloUJoVgXmM58c5xlOgtDItEMs8vWaeRdi5rCbfXsskA7nRvvXX3VSQkkp8JLeCIwwlURvhWc/Poa8WK4B5CJO6CTUM/OCK6prFr4fs81bQjn3dMybp/hd4E/mJQVQwlgWkp/LQyyFhXJnoGPh+9Mh2PxbKaNto+5snR7Gp/I9vkf4nq91FZmWUuW4p4nDZXI+OzFdVE46LjbaiiSKqqOfdnmsB114n5d7//PRx9dNf3KxnQyNgtkUiGHMEgByy4xi5MvkloLhSMz9jN3RGvqwPLF4AxYygrbeeG8O96fj1XTPfM/MqWzQY0h1MiukptvASiTgzPD7qy5NyCPBpLo1W83roFAHus6HpmnWRgI2N3z3nojg4MI7NwsEQiGVjMnAkv3lcADWLw+pvibdnCyszrzCai+3xiv/wSHykRvS0R8oro8+ahAiE1Aj4L8pwTK7pzUiuWWW/MrkHmslFLFSLNyEQH/na1RjwO660HFRXwmzt2gJopHFX6ImeEw0gGFn1Wdw899NA1eR+DDsUlsMlmj0SyZnBnoptW2usrEMCnxjKOGe9fbn/+rGM9WuPJYqSahqpYbJP3Zc7rbRBcYGeiA1y96hgOuWEr/rz8tNw3aRheEf1//7O9zqKmzjedEwibruloP/2U9TR2JrqiYhiwdfk8bhp1HTdMupWZM3NfnnicVtPpgD/+7TRiiWQmuiY62R6NP27Co4+KBsFNN3VxYslgQMZuhzlz5jB16lS22GKL3h882jXrpbR0zd2URCJZ84RCNLrqpEzxL+42E702VXYllEfprluIIundsOPc29n6h7s55uUj7HXdjqlbFs2RQHJnhfKg08F/ceLpXHTQd/ay4hoAt8DT5ol2dJ1EIBnYyNjtkCt2n1v1ALeN/hvrTR3AyWsSicRmr73gwmuKIL8ACgu59ZMtss7GzlYOJLUuvzxgr2s3g96damudYJ82G1v1OQ2CRCQtvsZivNy8JWcu/T/O/ewwfvhBrI6nRHRFyXB/TAn9iUSyrZEcCYhbmpPVLhkw9DnK5EvfvS5pijuN81WuqsISicRFLy2C0jPRPQQCWTPRA4o3MMUUn+faR5S+lPVa5XoTCyMjRFBVVUxL4YnGnQHLzvwC+Nf4P9mfLxx2d2Ym+jXXwP/9H4kEHLXoMo5bdDG/XXwBppX87osWZb1+ysdcVZOnS52zu2ykeNrfwLKI2yK6aZ/T3twii5kMJWTsdjj11FP57rvv+Pjjj3t/8NVXi4pF48aBFDckknWbUaNAdbLKhhl1Wf3D3Z3e9nYYNkyE9LIyxPOeg4frd+PKlcfRaoaIWobTkaYHmejxOM2J5L0oCpV5jogetQyvNYyr0FnC0vArjoge6ZCZ6IMZGbsdcsXu8f7lbJH3Xfa0VIlEMiCpGB0UMXzESIqK1ayuitncSFPr8irz7HVt6SK6m7TUcbeIbqX3raNRFkRG8nbbJryxcn2am8XquCXePapiZdxnyrHlxx+hpQVI1nGLozkbJQOGfnuiP/bYY/bo+Ouvv863335LSUkJRw9xS4Bvw8400ddaZjA5sOQXvBuJZB3imGPggQdEQCzr3QCTFnSGmj/rWI+6eBHlejJyBQKsjGVmlqUKgqYoKklGtaSIrisJzq56iGtXHeXZry5ezCUrfsv9gY9A03iueTuxwQJwOrLDjdXcN/YSWhMhZuZ9A8Zm1HYWcPi8W0lYGjsUfMol3MmyJaYQ5YHvw2M5acl5/GXYnYzIFjgti2hEiOWGYXnutyciumW5pqNhOpnoaqaInmhq6fp8kkGJjN39ZOJEeOkl0VmXPukSybqN3w+lJcKjBSjTm7Nmoru1t/XXhxtuECE3kQAuKPTsWxsr4YylZ1EbL6Ep4T2Xz8hhwZLNEz0apSWR7OQrCuX5TpsgYvk8IrpbkE8VD7dPIzPRhwQydudGV5IDSdkKgEskkgHJjBkwdSp89x3sumv2fQJOsjkVFfDb3zqaeF5VPpSVQ0M97UqB0CECAbjzTgB+igznpZat0KP5zPgSNtpIHKcaTvBORNIGqaNRwlZSpVcVgkF4vWULvguPA3AS5XKwbJk4DpLZ61JEH3D0O8qccsopPPfcc9x+++3svPPObLbZZuy7774ymLuw6F22rUQyqDn5ZNh4Y5g2rfeFRQM+KvVG4RkKNKSJ6IsjlZkHjRrFQbWv80Tjzmwe+h4tOMzedOmK3/Bs8/Y5rxdQo7adS4HtoWbZGvryaAVHL7qUuKVx39hLhE96MhM9lVnWaYrIPia/nguH3c1lK08A4POOKSyNVjEi2xSupiZiCRG8Db9X9O/WYz0eF9lrKSy4eNwDRJrDBCoKgG09HXGrqQWy12mRDGJk7F4DZKllIJFI1k0uvSDGX86wmJH3LWN8K7OK6H4/bLutEL6nTRPrFEVock8t3YK3lmxMhxngouF3cVXNscyLZC9mXhBwMsRV3VWDJFsmeiRCW8qCTVEpL3A601FLzymipxPtlJnoQwEZu3OjSRFdIhl06Drcd5+YuD1uXPZ93CL6dtvBAQc4y/n5QGUlVFbS/tfbYbfkhj32gP3246fIcO6u2xdafPhdIvrmU1q5buSNKFhMnJL2fo1EiJjJPoCiEAjAgsjIHn+nUaOwM9FjlgbSE33A0e8oc/311zN37lw222wzHn30UTbZZBMOOeSQNXFvA5a3ppzEzvMetpeliC6RuPD5YPvcwnVXKAE/m4a+5qWWrQAIqq6R20CA/Uve5NuV7mJhCoV5JudUPcgehe8yJbAYjJvtrfMjo7q83qcd60FgEfj97FjwKX4lRsQ0UZOVDi5Y8Ts7g+yF5m04rfJx8PnQDeeZT03tYulSMYXcRYcZyD76vHq1XZzE8Ivj366fxo0LTsHSdH7zPOy5Z46bjsU8InrCVJhV8CnQCtWiw19aEOOWUVejKhZl/vYcJ5IMZmTslkgkQ4k9ThjG9rceRp7aKcaks4jooRDceGP24xeFq3mvXQzgf9UxiQ/bN8h5rYKAkxXuEdFjWYTuWMyuk6JrFkHXbPM/Lfs9Z/3gZ7t9kufqQkSPSBF9SCBjdzaSM0tJiFEvOTtMIhlUqCqMz6wFbuMW0dP16DzHzYW2NteGESOgsJBES7KfnuZjXlVhUlXwmVgo2M970liMsOXYw/r94HPZqxUGM2u0uRkxgrRMdNkXH2j0W0SPRCJcccUV7Ljjjuy3336cddZZ0rcN4adcFy8GXNPLJBJJ//D5hPCcJE/tdLaFQuxR+C4rohUE1Cj7Fb9FOFSKvsvOaP8xmR6ab58jRSyvGJLBtlRr4fjyZ3moYXdq3HUM/H6oqgJgUmAJ38TKMVHoNP183TnR3u3Rhl2FiG4YHt9SMzWItnQppVqz5+t0Wv7sxURqa9GVOCoWRlC8pjtNP0ui1aCqqTql2YnHibhE9GhChVgymCczZ30+2DL/my5OIhnsyNgtkUiGFKpK/oG7wtNPC7PzLCJ6iqYmkb3m7lCHCp2Fv6w80XuAonis1gqCjoiuGY6gl4hlz0SPJDvjfsPEH3TaD8tilSxcbZI0k2N0VYSnJpzDw/W782TTTp7TRDu7maUmGRTI2J2FgA8ioCmmzEKXSIYgeXkwaZIQ00eOzNyWot2tVSsKjB1LeElSF4hEvd7q7mql6QlvkQhhM7mzohIIeAt9/2nv74BqzyHDh8OKFWJAIBDA8USXhUUHJP0eqn3kkUdobGzkV7/6FR999BHPP/88F1544Zq4twHN6ZWP2Z/ThTOJRNJH0kR0Tya6z4dv1x05pfIJji9/llK9heHFHVSWpI0GuywYotM3tz9PCSzmsNJXOL7sWe/+fr/ocAMaphCkLfhnw2zPbrZw7fN5ssUSqUz0xYsp1b3+4x1mIKeI/tSEc/lwvWN5+sJPAVcNVqsbR5dYzDMaHo27gnOqQSCzdIY8MnZLJJIhx5lnwiWXwB13dBkHzztP2LocfDB0dIh1oaIu7Jt03VMo/YeaYvvztJHN3Dr6Km4ffSV7bt2YeWw0arcf/IaJL+Atimj4nfP6/AqjfauoMDLPEw1LEX0oIGN3NsSzLJPWJJKhSVkZPPoo3H03zJolrF/q68W2zTaDe+6Bxx+H/fdPO3CvvZzC3qEQhe7SJ24RPb2vnpaJHgiAb7LjNROtzrR6u+EGOPpoePjh5FifkspEl4VFByL9Hq49++yzef7555k1axYjR47k5ZdfZs6cOWvi3gY07tJBitJNIUCJRNIz/H4+6VjfXgworqBjGHD44fDqq866vLxM32LXcsxyOquGIjLHzPSxRVUVc7wLC4XfYiwGWHzWsV72ezQMbyGx5PneeU/ls4bdPbt25hLRV68GRHz1jaiwb0NgdV1bNB7noXEXsf+Ca1garaIjZvBl2wQMJU5RtIIRqRNnQ2bwDBlk7JZIJEOOUKgLLzSBZcH8+RCPi054yl4lVBrIfZBuiAPjoh3R2ekE6eKCBDPyvhULpVl8T6NRbh51LR1mAGv2rnzeNDbt1K42STJG2xlw7tNIEX1IIGN3FpK2CLoSt59BiUQy9Fi9Go44QnzeZhu46SYoKoLp00WB8E8/hQkThBTw979D7ar9eTe2NegtUFpCUZFzrpZYkPkdU0hYGsNqdDwJ7u5MdFWI6P4jD4IvWsHnp3NEZo22CRPgD39InrsF+70Vs3TpiT4A6ZNicv3113PmmWcCsNdee2Vsj8jRFCxXVV7piC6RrCEMA3DeLx4t2DDwmImCWE4X0V1ztbbZVuFfb4nPq+MlPNO0A/lqh739zKqHQZ0kFqqrmThvGZ8lRfz32zfMfo8jR6Lpn9uLqUz0j+YW8Ui9d/p1KhP9u+/gqqtE8D/oIDh+9Woa4wUUau1olSIQq67BuC4z0ZMdiNSgQEdM54TFIktpe20F1wNxU+WjtumYKBRrbWwQXCCO1bRsZ5QMEmTslkgkkq7ZcUfHN3X99Z12hrBzySHQ6TqYCTv+Hj76PWAjZ1uKbAJfNMp4/3LxeUwLsaI2CrV2u96K7neJ6MkY7bZsG+dbweZ537PJiCm9+ZqSAYSM3d2QtEXQSdB1lolEIhnMfPih83nSJO+222+He+9NP0KB6mrxH3gy0b9bUcxpi88H4DefNHCy+zBXLRMUBZ8PyiYUw8hiwM6Fy4nIRE/auSAz0QcifRLRH3jgAdo8zvxe/v3vf9vBfqjiLiaqIAO6RLJGKC4Gcrx7dF1kmbkJhTJF9PJy++PvTlGpvfEz2swQn3asx2UrT2DT0A/cO/YSVkQr2KnwY1CTHdNhw9i/+E0eb9wl6+UvHnYXTJwI48d7PNETVjJINmXed8Q0IBJB/fRjvn2hAkrLqKkp4I0fhvOnH29hvH85D/uCaICSHLHG6qaPkPQ/L9ZaKdZaabX8pCa46ro4sDOqcfrSswHYKu9r/j76GrFDl+q8ZKAjY7dEIpF0jfsVOcWlS4fyukiJ0TVIaMwq+JSpgZ/Yp/h74Hdim7sNEstSbMw9G83nY9Mp7ZxW8ThX1PxaHO5zRPSOhJ8XGnfm0YZd7XWXj7iVyYElMOm3Pfl6kgGIjN3doCqAJTzRJRLJkGXBAufzZpt5t2UK6Jm4RXQ94MikiWiaVVQkYtu5BHwWimLr8ICwjznllNzXCQbhpac60A88RXipR7bo/uYk6xR9EtGXLl3Km2++aS8vWbKE0aMd75/ly5f3/84GOPfU72N/ro2X/IJ3IpEMIgoLKZpYQfPyNipjK7zbsmWiZxPRXUJ7YZHCdaNupCFeyOwfbwGwbVp2LfpA7JRKQxs2DE2Zn/W2PlrvWJEpvvUxAB5P9JQ9TDya2bhPoEG0nYrr/gQdf4eODmq/q+Dcf28JwPzISK68tYgLrgZV7Vkmeme7SVOsjLOrHmK0r4b6ERuy7xti/ljqT6HqTqfcdM+VSUg/ycGMjN0SiUTSc5I1xQEITRsH+k8Qd4TwkBqmSGtjpV6BZiU4r+JeUfskMNXepyUe4qu2jTAtlRGLdSZsk3aRNBEdv19M706iu0T0loifv9Uc6zk8kKoNIzPZBi0ydnfNuNJmtGibpx6QRCIZWlx7Lfzzn85yWZn4v2nCU0/17BwlLslOCxikZp/FY2nZa9Eouxe+x6p4GcpmWwNVHhG9OxQFyof7QE8Ojsr4PeDok4j+u9/9jr/+9a/28lVXXcUf//hHe/miiy7q/50NcJZGnZZ3xPR1sadEIukNdz9TwWuvVbDbbWd4N+Syc+mBz3d6MaKUFQrgmJEPG4ZGdpHZtlpJXkvVVRQsLBTilsZ7bdN5qmnHjONSxURS07YB5v5nHuBE8dfeDXABoLgqi3Ylol/5yBhemH8DAAcWv8HhpV8430tPu1+8s2YwTZHmnsszXTKgkbFbIpFIeo57DL5qhA7jx0EkwvTa17ln7KUAtCcCPLTP46y3aT6lV0cgpoLrvbqosYgzlp4FwBFv65x5hPcasY4YLzVth1+NUl1TyfRhmmgbpO7BVWhUNdIs1xQFf0o4bG9fA99Ysi4iY3fX3HPYyxT/5z+/9G1IJJJfkGXLvMspEV1R4G9/6/748eO9MoIedET0RCyt4x2Nclz5c+LzAVXAZoRCsPXW8N57cPLJdI/LXlaK6AOPPonof0i54idR0gSX3//+932/o0HCHkXv8kKzSDfZu/jtX/huJJLBw9ix8JvfAA82gbvPqOvegAQi67wHHUuPaJ6+7MlE72aqaEpwV1UuHX4HmpKgWGvjlCV/9OwWUsOM9y+n2qiHSMTjr746beZKNKZ4Tg1gmRY5qy24sslfadmSgzo/cb5XKhNdc9vNpHXKTVN6ow9SZOyWSCSSrjnlFLj1VvF5222d9aNHw6ixOkuXanwXnUjU1PGpcfL+eBonHTZc7LTD89DZCcOG2cdpPieeJuKZbYjWpgSXrBRWLNu9p3HDlkuJWE7yjTsT3T2LDOCyDf9FcaRVLDQ09On7StZ9ZOzuhkAXRX8lEsmQ4Nhj4Z13nOVUVnlP88IeecS7rPkdmTRjNnn6DLIkN94INTUwfHgPLqiqQruIx6WIPgDpk4j+1VdfsfPOO9vLVppB79dff81OO+2UftiQQndlrMqcTolkLZCeYa7rXqUZxJByY2O3p+pSRC8uFv+vrubpplldnyh1fU1j96L3sCxYGB2Rsduj485nhC9ZdaR9c0zL6+V+ROnLPJL0PLVFdHdh0URuEd2dVR9HIxZxAn9KRLf91SGzYkMiIUX0QYqM3RKJRNI1hx8uNLkJEyBZ1xsQHfGDDoLmZoX1S0rBOht239k7/7u42GkzJHFnj5tZRPRIhxOz/X74eGEZt64+yF6XKxN9+/zP2WZKHbs8eSsJS2XL8Cquv6YPX1iyzjOQY/c333zDFVdcwSabbML8+fOZMWMGJ5xwgr39+eef56WXXiIvL4+xY8dyco9SONPwyRnfEslQZ5NNYJdd4LXXYKONMiWBFJtvDp984l336KNZZIWQ817JZudi43r/qGoPBfTkNTsa9qcg3sghkex2sZJ1lz6J6Pfddx+TJ0+2g3hTUxNLly61lx944IF1Npj/XChKhjQlkUjWJNlE9HTy8qC52Vl2G5y6SLdpsQfBJk+GXZMFvIYNY0WsnC5J3UMycl+96lj+1bhz5m7XXw1/EkXDrKZmXmnZ27N9v+K3bBH93DNigM7YwgbOrnoIFZNpW12e8xae/bgaqAGg0/Rz+o9OhpKRjPNujdy00loZ8bjskAxSZOz2MmfOHObMmUNC1gKQSCRJgkE44ojs2448MvWpGjgo+05peDLR0zviQGeb8/4J5YE/z9uWqahwPnsEeRTU/BCdhMBKEOuQftCDlYEcu+vq6jjxxBOZNWsWsViMqqoqDj74YAoLC2lra+PMM8/k22+/Rdd1ttpqK2bPns348eN7d5H0WagSiWRIctFFsOeesPHG3vWzZsFbb4lu/ZVXis/TpsGrr8KkSeK/dDyFRbPYudjup33sM991F7TU7M8obTmHRL7t0zkkvxx9EtEffvhhHnHNebAsi6uvvtr+rCgK99133xq5wYGK6srvNC2Ziy6RrHHSRfP0AqIgesN77QVPPCFsSq68Muup0qd6+dQY3HmnGNZObSwuRte7eZZddi5AVgEdQCt3Mtf+PXcq34XHebaP9y/nxlHXsSpWxt77/gWA4QWtHFb6X7HD+pcBObLF0zKUmuKO37phiPt3Z6KnCp/aSEFx0CJjt5dTTz2VU089lZaWFoqKin7p25FIJIOQ7jLR21qdmJ2fB758HyQH8g8ueZ3JUw50zuVz2j2mpaIZKugaRBPEO6WIPlhZ27E7Go1y8cUXc8011zB//nzGjh3r2f7vf/+byy+/nGAwiKqq3HrrrUybNq1H5541a5Zn2efzoSUzOT744AMmTpyInmzPb7HFFrzyyiu9z0aXIrpEIkG4uG63Xeb6888XfuVbby0mj+2/v1g/eXLuc2nBrjPRZ/5wP5qSYMObKrhzl97fq2EAqiIKiUs7lwFHn0T0o446issuuyzrNsuyuPjii/t1U4OBbzudUfTvwuOZGFjWxd4SiaTX9ERED4VgxAhRljsaFVVDeoChxCE/36uuKwpqKABptqPj/cudhVSKt6bxY3hUzvNrhXlgGDy+ageurj2IdFOVuKWxbf6Xye/w18wTWF3MdOlim+FLiuiaI5yb6bYwUkQftMjYLZFIJD8vHhH9f+/C3R/B8cfb7Yv2Nidm5+Ur+PJ0UiJ6xDQ8bR23J/pnHeuxLLxCbI9Ghd96JCIFxUHI2ozdixYt4vDDD2fy5MlZZ2V99NFHHHPMMXzyySdMmTKFBx54gF133ZXvv/+egoICAGbOnEkkiwj0wgsvMNzlbXD77bdzwQUXkJcnkjtWr15tnwOgsLCQ1atX9/5LZGv/SyQSSZKSEjjggN4dIwqLChJxb9/aDEcxUTAt3VMIvFfn1wFVJZ7QpIg+AOmTiH7ccccxZsyYLrevq/ws3mzAvMho+/OPkdximkQi6SPpjeZsdi6pzuTIkb07tRLPWolkQTjT33y3wvedhZSIriicmlZMNMVoXw2n/nkyvp8u4pvWMWRxJWfLH+4lpIa5bPjt7JA6p9vczcxd4HRMaSuLa7Nvs0V0VUHFSjYAVCwLvglPoEJvolqK6IOWgRy7JRKJZCDisXNBhdtuE/PIt9wSgLY2Z9+8fMVj5xK10kR017nClo/z354Nmtget3RRXNRV1FQyOFibsbutrY0HH3yQZcuW8cADD2Rsv+qqq9hjjz2YMmUKIAT9c889l/vvv5/TTjsNgA8//LDb6zz99NM0NzdzwQUX2OsqKipobW21l1taWpg6dWrvv0S29r9EIpH0g64y0WOdTu00X6BvjhO6DiiKEOGliD7g6FPU6c53bccdd+zTzfwc/CzebICChZXM8LSknYtEsubpSSZ6T0typ5+a7EJyo1mYsS5qua7rykTXlMxzzCr4lAuG3cMuC96AjglAPGOfFB1mQATWpHgetQzqouVYKOQ3WRRVZz8uFs/8zqdVPM7+JW9ibHmMWKEoKFioiHfV660z+NPy0wgoUV5oMiksy3lbkgHMQI7dEolEMhBJt2AB4KOPbBG9vd3ZN69AxV/gdNzTRXTN8Ga8FQZjKIaGhZjBJkX0wcnajN0bbLABAMuWZZ8x/frrr3uEb1VV2WyzzXjttddsEb07/vnPf7Js2TIuuOACvvzyS4LBIJMnT2bLLbdk/vz5xONxdF3nk08+4Ywzzsh5nkgk4sl4b2lpAcDSNE86itVFoolEMlgxTRPLsjDl73+NUF4J70w9Ec2Moa03CdPczd4Waem0P+t+rU9/c11XQFGJWzpWPI4Vi3mLlkn6zdp8FtbJodsB780GKDj5pVa6XYJEIuk/a1hE3zA4n687J4pTK4msx5qK95qjfTWM9a1wVrg80TUl88X9VutmzK74AjSlR/emqZa93zeNIzhxwe8AOOYhjdPPzn5MNJZ5Xp8ao0hrh3wnU/6D9Y6zb2Hz70X2Udjy8cIrGof9rttbk0gkEolE0g0Zmejgif/tnc7nvAI16YkueKN1c5bWGIxKjt+rhkZQjdBpill2BYE4uqEQS53bldUrkfSX+vp6mpubqa72Zm1UV1fz8ccf9+gcb775JieddBKbbLIJzz33HHV1ddxyyy1MnjyZ/Px8rrvuOs4++2zy8vI45phjukxcu/LKK7nkkksy1je3tZEfc2oC1NfmmI4pkQxiTNOkubkZy7JQVbX7AyTdUqrFIRom0tpCs+u9El3dbBd2jhOltg/vnESiCBOImirxWIyGJUuw8vK6PU7Sc5qbm9faufstov/xj3/k0ksvxZ/mwfevf/2LxsZGTjjhBFuk7gmDwpsNmJn3De+3bwhAhd7Yp3NIJJIuSBfRs03n7IWIfsWIOXQEy4m2RlCHV8O4cZk7aRqp4bGdCj7hqhE3ey/hzkQn++jnT4mk1ZPa/b25v5K7PWSZuX3Po7HMhlPcSp4oNdCgqjn/NGoWexnJ4GNNx26JRCKRZKL6dFQsVMXM2i5oa3didn6Rhr/Q+04O5DnvYSOg8fC4P3LAgmvE/sEEmoYQ0S0N4rlnt0kGBz9n7O7o6ADIuJbf77e3dceOO+7YpZCx1157sddee/XoXH/+858588wz7eWWlhZGjRpFUVkZuiuRprKyskfnk0gGE6ZpoigKFRUVUkRfQyj5+RCPo1sWftd7ZbWpoiQ70gUlBVRWBnt97rw8BVXXSGCgGwYVBQVQXr7G7l0ikqXXFv0W0ceOHcuPP/7I3LlzmTVrFmVlZdxyyy189dVX7LDDDtx22209nu4Fg8SbDdg2/wtbRK8yGrrZWyKR9JpcIvouu8Brr4nPPZyhAjDMqIffHQETJ8KUKVmnVFmqSqrgl6YkMoVol395NjsXgBa1WHzogcCva46g7bFET+QWumOJzPPaRU96UHzJp0lP9KHAmo7dEolEIsmkepjCR+sf613piv8+K0Kl3khdvJjSCg1fgZ9qo56aWBmbhn6gYth6znG67gyKI0J6qtkRtzRZGHwI8HPG7lAoBJCRmBaJROxtPyd+vz9D0AdQdN0z51uRAqJkiKIoCqqqShF9TVFQAE1N0N7uea/EO5yZL76Qr09/b8MAVFXMIrNAjUS8nX1Jv1mbz0G/RfSvvvqKm266ibKyMi699FKefPJJXnzxRe655x6qqqq45ZZbenW+weDNhiUK9jlYjrWLaYJpolheEcyyrC6LBWZgeq+AZfXMAy79uLT7+iVIv59f8l4ka4617c2mpInolqqK383ZZ4sy3FOmwKhR3f6WPE+qZcFWW4mFLMclFB1sv3QrI2fbUpRur/fYiu1gvJUhom+T/wVfdEyh3XRGs1XN7eflXM1MmNn/ro2NRFc1Ad6gcevqg7CAHeoKGZ88LpeEX10WkX56a4l16e+6pmO3RCKRSLKQbZacqw/w62kf8evlr2BaCkx5BsXQmTPqKj5o35A9i94B9QDnOE1zBsWTp04NtidQZSb6EODnjN1lZWUUFRVRU1PjWV9TU9OnemFrijlz5jBnzhxnxrosLCqRSNYwiQTcsWI/4rW1DGtq4GDTtEXumEdE79vMH1FYVJwvgYbe2dn1AZJ1in5HnUmTJnHbbbcBEIvFuOuuu1i5ciVVVVUAlJSU9PcSNgPFmy0WjxOPJ2yvJCsRI570amuqryeRl0d+ezt+l39bZ2srHb3wU/I1NVHgOj4RjdLUg+PVujpKXMel6GhtpfMX8pAriUZRXffU0thITPrZDXjWtjdbQSyGz+2BWFfnbDw2mfXVg99Rmesc7S0thLs4ZuPhy3h9hZhqNUJbYT/XKVpbW4nW1uJvbSVultrvADeWIt4JCngG095p3Si1h7OvFbN91sLRiH2+lpY2amtbMs4duO0O4tZBnnOkuLX2QEqXrCS/thajqYmHVx5AhxmgWGtlnLGUhdGR+JUoE6obqa3tPmNd0nvWpjdbb/k5Y7dEIpEMWbIJfPPmiQF3VYVoFABVsSAgph6P8dcwxl+TeZyue0V0Q+HiA7/FfOxf5KmdED9yrXwFybrDzx27d9ppJz755BN72bIsPvvsM84///w1ep3ecOqpp3LqqafS0tJCUVERTJjgbNxuu1/sviQSyeBBUeCen2ZBezsbBX/k4M5OyMuD2lqizUnBW1UxfH3TOMaMgXB1E2r4J9FrD4fX1K1Lfgb6LaKHw2Esy0JRFFsgiEQi9rq2trZ+32SKgeLNZug6phawvZIUzbC92srKyqCyEiUvz2OtkF9QQH5vPNyKi1Fcx+s+X8884OJxz3EpCgoKKPiFPOQUn8/ztygpKQHpZzfgWdvebEpBged301cPRPfzUJiXR2EX55kx+TPe+LQCgFGBBo8HI0Bx8vmmpAQU3X4HeK6n6RgBg5img6Lwq8IPeLVly6zXCwY0+3vVh5x3SiiYR+VHr6N88gnW/7d35+FRlef/x99nZjLZyIIICVQQkEUBLbIrCmERvgVrRUEwIotWqEZbRcVYaV1RKdaqJYq0KqBQlFYQgYqCYNEqy89iiygIEhUhskgSIJBtzu+PSWbJApNkkpkz+byuKxdz9mdIztxz7vOc+5kyBcrGeijN/pZLmmyn2HRgM1yc7cjln3n9Pftr2izBvb+zzuKtY0PJK21Ca+cPnDKdGIZBguMUzZKTdf7Vk/qszVZTDRm7RUQararKqH38MYwbB3PnepLoAJwpRjgc3L3vTu+k02DAhUdh9f9zz1BP9IjX0LE7MzOToUOHsmvXLjp16sSiRYuw2+1MnDjxzBs3lObNYdYs+OwzbycaEZE6MAw89dJKscGNN0JqKmzeTMnJsnHTDFutH4T53e+AZuvh5ZfdM5REt5Q6J9G7du1KSkoKTqeTJk2aMGTIENq1a8ezzz5Lnz59gtrzziq12TAM5h661jP535Od+FnSx+5FNpu750mF5JphGDWrg1RxXcMIrAZcNet42hUGwqktUjf1WputwoVpMGognuk8dEV5S61EGaWVSqIYDod7+6io6ofntNlwOAyKmybDieNsPtGt2uM5HN7/O5vPQKRGQQG2Rx5xv965E15/3b1Oy+bMaTPbbx+tow4y7/AoAJwxdvf+7HaMsha6TBtPnfMsb+UOZF9xC2zmBTr/6kk41ShsyNgtItJYFZY6eDZnAiYGbZ37GXvWe+4FX38N77wD//63d+UAkuiHSrw9jR1RNv+e7kqiR7xgx+6ioiKGDRtGbm4uAOPGjaN169YsXboUgD59+rBgwQLS09OJjY3FZrOxZs0aEhISgv3W6mbIEPePiEgQGAY4HAYlQLHpgG+/df8ArZ0/8Fzrpyg6uxWtrn6s9geJ9RmQVOVcLKXOSfRf/OIXDBgwgOzsbLp06eJJKr/++uusWrWK3/72t3VuZLlwrc1WlRTHj+wrdvfmTLKrR59I0AUwSGZAkpKg/KLjDBcFxTbvTTOHUcXFqs/Aoi6z6oTp4PO+4f2T50BCIhgGeaVNqj2e77Wxze5NorvyfT5T9uzxvq5iVO9i30HIor3tK9+biUHX2K/pGvu1u0xr6UvVtkciR0PGbhGRxqrE5uSNo0MB6Bu/3ZtEB4qe/yvTvp1Oov043WL3kF6eRL/qKlixAq64wn9nFQY8d0QZ/l8UNLBoxAt27HY6nWzYsOG064waNYpRo0bVtslBV6kmuohIPXBG402i+0iwF3Bpk/9Cm1PQqQ4HiInxvlZPdEupcxL95MmTNG3atFINtrFjxzJ27Ni67r6ScKzNVlUwH5b4CS8fuQqAHnFfhqppIpErWAMJPfMM3Hqr+3HQX/zitKt2PLeIa5PfpwQ750RVUTvdJ4n+dOs/ccPeR/0Wz2j5EldemUq/f5SVWLHZobTqnmO/bvE6qbHeHkW+D69UOz5lFTcWTpnenm3RMYZnZwbenfy3oANP/XAjxaaDa95JYMxPK+5FIk1Dx24RkcbIFuVNfFe8uZ53zMYnZU+jFZlRpJc/rTRjBowdCx06+O/M4SDWVshJVzQtow7zy2FH2JnTjBMFnQHooZ7oEU+xu4qa6CIi9SA6GgqAQlc1T4nVtRKGeqJbVp2fLe/Xrx9vvPFGMNoSkMzMTFavXs2uXbsAwqI2W0ZGBjt27PAb3NRm+AwOGIpGiUS6YCXRL7wQ3n0X/v73Mz5K3eenhdzfcj6/a/kSXWL3Vl6hPIlumsTaKt9Rvjr5AxxNYhg5smzGacp75JU2IdHp3YdvT3SzUiGZMr61VcucdHnvcsfGeZPo3n3BKTOaHafa8VVhaw4dCZ+SI1J/Gjp2i4g0RvYY783t0gqXXfmueM/rRNsJ7wKbDTp3rtTzHLsde9kNcKdRgjPWzu9f68SUbx7g19/eq3IujYBit4hIw3BGu2P298XNWZE7oPIKdUiiv/AC3PJiL27K/j15pfFKoltMnbNQU6dO5brrrvObN3fuXH71q1/Van+RUpvN5tPLs7qyDiJSB8FKokPgQdD3jnFVypPiLhclZjXti4vjrrtg1SrAboPiqlf7rKAj8JFnus1Zx/lH++kYhkmTKzPhP5W3+e5QDHftmUWUUUK32D2sP9aT3FLvZ2Nck7L2GQY2w/0ZVeCK4YRPor3CkBMSoYIdu0VEpDJbtDeJXn498Hbu5Xxf3IKLYr/yLEsa3OPMO3M4PLHbBIiKwlG2+1JsSqI3AordIiINIzrWm8N75MAvaePMoXvcLr4u/AkHis8m4Xh7zjsB8fGn2Uk19u6F/3ydBCc7uHu6q5yLpdQ5C7Vv3z6GDh1Kz549iS/7C1q2bFmtg7kVa7OdSbW9RkWk9oKZRA+Ub+2yqpT3GispocS0V71ObCzJyWWvjepvsJ0ynbiLlLs5z07k3Oiy8SDMI1VuU1AA2UUtAWgZddgvgQ4QG192PJvNM7BoXmkT7t33G886xdUk9SWyBDt2i4hIZTan97uKCxsfH7+Qhw/c4r9SSgqJQ7qceWd2u6eTTqlpB4cDe9lTaiWmXUn0RkCxWzXRRaRhOGP9r+V/+c0Mbj77LYpNBwuPjIQ1yczbCT0CuAdekc2Gp/OdC5t6oltMnbtIr1y5kksuuYS4uDhM08Q0TRyhSG6FmZV5l3teby24IIQtEYlQoficOVNP9PIkemkpm8rqnFZS1uv9nns4bTmXL0+1pdT3KZazzvK+/vHHKrcpOuV9AiYupnLh9Jg47/6qu7V3okA3/RoDq8Xu7du3k56ezuzZs5k6dSovveQ/AO6qVau44447yMzMZO7cuSFqpYiIP5vT4blpXWLamXe4ik5AdjuJiQHszG733Bz/vrg5n+9Lwu5wx2wTA7NYSfRIZ7XYXR+qKqMqIhJsFZPoAC8d/gUfHS8bPMywUdtiGHY7YHPHb5dpqCe6xdQ56j755JOMGDHCb16/fv3qultLqeqO+FGfHqD5pU1C0SyRyBaOSfTypHhJCf8pG+irXMfo79wvypLo48bBrjlfsuI/51S7u2MlsSSXT/gm0Q8frnL94iJvz/W4aP8eOh2jvyMmvp1/O6tw6Gg1Peglolgtdh8+fJgpU6aQlpZGcXExKSkpjBkzhsTERI4fP860adP4/PPPcTgcXHLJJQwbNoz27duHutki0tjZbEQZJRSZUZSYdk66oiuvE2gSvULs3nkgAbvPVyFXcSmK4JHNarFbRMSqLrjIwY73K8/fU1h27R7tJCWldvu22/E8kV6CXUl0i6lzT/T+/ftz//3388c//hGAefPm0adPnzo3zEqquiM+5exlntcjkj4MRbNEIpsRgh7TZxh41Lcnennd0nI94r50v/BJxI+96IvT7s6Bt1fZidizefPoIP5+dAib/lt1WZmiQm8SPTbae/zecTv4W/sHvI+VGwa94ndwafx/K+3j0NGoSvMk8tRH7C4qKuL+++/H4XCQnZ1dafmyZcvo1asXl19+OQMHDuTzzz8PeN9paWmkpaV5pp1OJ/ay8+2TTz6hQ4cOnt54vXv35t13363TexERCZYowx3LdxW2YW9KFQlPu52kpJrv1+G0Y7N7L+VKi1TeItLpultEpGHc/2g8veJ8rtXPPtu/E19SUmA3wKvgV87FVDkXq6lzEn369Om0bNnSM7DnLbfcwquvvlrnhlnduLPWMC1lEY+0epEecTtD3RyRyONTL7zBRFVIMLdq5T/tk0S3459ELy4faNRnENPOrY7xxE+yqj2c3ScRnxvVnMdzJvNkzkTe/l+7Ktf3TaLHx3gvpovMsnY7vEn0R1q9yHNtnuKmZiv89nFQSfRGIdixOzs7m4EDB7J///4q65Ru3ryZCRMmsGjRIjZu3MjNN9/M8OHDOXbsmGedvn370r1790o/+/fv99vX3LlzmTFjhqce7KFDh/wGF09MTOTQoUO1fi8iIsHkNHzKrERXcTPeFmBPdCDZ7v3MdDhtnnIuAKXFlcu4SWTRdbf7CfAuXbrQu3fvUDdFRCKZzUZ+qc+ooXY7tGwFCYnQti3Yav/slzuJXlbORTXRLafOSfQBAwbw61//mpSyZxkMwyA6uopHFRuZKKOU9LPWMCLpo1A3RUSCpWJP9LZt/ad9kugVeQYa9S0JYxhckbiJfvHbqzxctN174W00Tfa8dhVUHWh9y7nExprYyuqwehL4Pkn0cp4Ee5mThXUOC2IBwY7dx48f59VXX2Xy5MlVLp81axYjRoygc2d3maPx48dTUlLCggULPOts2rSJbdu2Vfpp5XOzavny5eTl5XH77bd75jVv3twvGZ+fn0/z5s1r/V5ERIKpb9fj7hfJTaseUNxu5yc/CWxfN5/tvfFtj/JPoruK1RM90um6WzXRRaThHC5JBsBhlLo78DVpAuecA7FxPPpo7ffrW86l1LRBUVHdGysNps7Zkn379gHuIA5QWFjI//73v7ruVkQk/FTsiV6xLnt5vVKHg3XH/HvIeOqn+fREL+9N3zOuclmX+W0fxmZ4k+K2s5K9m52oOonuG3+dURBtc884ZTr92+tTV7ViEt3lCk0nf2lYwY7d3bp1o0OHDtUuX7dunV+vMZvNRs+ePVm7dm3Ax1iyZAm7d+9mxowZfPbZZ+zatQtw14PdvXs3JSXum05bt25l2LBhtXwnIiLB9dhHgxhyQ0tomerpeeZr4CAj4MHJPDfkAUe0HZtvT3SVc4l4uu4WEWkYx47Bj6Xux8TOi94Hpd6nvc4/H/7v/2q/b3cS3f3ahQ1KNDC4ldR5ZL62bdty6aWXkpCQwKJFi/j3v//Nyy+/HIy2WUZVA4uKSASq2BO9YhK9fPrqq2Hqd+Aqdc8rKeGLU2UlWKpIok8++22W5Q5if/HZAPSN30632D1genvg2mKc7uS3y4Wrmie2PT3RDYMoh0mUUcJJovm68Cf8IWcC06voie7ppQ6MSPqI83/+U0D1NSNdQ8buI0eOkJeXR2pqqt/81NTUgHuSrV+/nqlTp3LxxRezcuVKDh8+zJw5c+jUqRNNmjThj3/8I/fccw/x8fFMmDDhtIOKFhYWUlhY6JnOz88HwOVy4apwchkV7iiZLhfVnoAiEcDlcmGaZqVzQeomqkWy+0XF8VxsNkZdawT8/13sk0S3OW3Y7D7xvLjyZ5jUXTj9n+q6W0SkYbz5JtCyFU0P7uSnsV/xTcogTpVdFrz0Ut2GZ7PZ8Oyg1FQS3WrqnEQfO3Ys7dq1Y8mSJdjtdmbMmMGFF14YjLZZRkZGBhkZGeTn55NUm5GBRKTmwqEmenU90ePioEMHKC2BIz9C7lFeavuId1kVrm26jj8fHEuUUcLsc56ttNww8ARbkwpR+6674IILyP3umGflKIoxTe96Xxf+xK+cS8a30zlQfDbfFnkTmzc1W0HbS5PBUBI90jVk7C4oKACo9Mh5dHS0Z9mZDBo0iLy8vGqXX3nllVx55ZUB7euJJ57g4YcfrjT/0KFDFFV4nLJpURG24mLPdP7RoxQfPBjQcUSsyOVykZeXh2ma2Gwq7xUsP/6YQHGxEzBx+H5/MWzk5ORy8GBgj3IXlYBZtv2xguPcc8sPPLb1V9gMk9LCNA7q8ynoThd7Gpquu0VEGsaVV8Kad5LY978O/HxGND8pjcHhgObNoa5VtPr1gybxYPvDW5ztyIWSAB9Hk7BQoyT6unXrGDJkSKX5ffr0qXJk8OrWFxGxJHuFAUQqJtF9lj8y087vf2/n7CYnWZFyE05b2R3mKnqiA6Sf9Q6to36gffT3xNm8vWTLuXMZ7qT4+8d68dzBsZSYDjKav0H0xo0U/+vfPHfwFQDOjT3EBXHfcHuLb3kiZxIAsbZCb/sMg++LWrCvuIXfMZxGMRQXw+HD7hHIJSKEOnbHlf3N+/b+Lp+Oq+amUn26//77mTZtmmc6Pz+f1q1b07x5c5KTk/3WNZxOv5tnTZs2hRb+541IJHG5XBiGQfPmzZVEDyrD+1Fis3njf5SD2NjkgD9W/np0jKf328H8FFq1PoER7d4/MdHE6/Mp6JwVn0JsIKGO3eFKT4CLSENo1gxeW2Rgms2w25txQRD3PWAADBhggwXL3E+4FqeeeSMJGzVKos+cObNGwbmm64uIWMppkugjRkDnzpDyxiqc//B5RMs3KeEzMGmUUcrgxK3VHsq3JzrAwiMjAbip2VtE24rZfKKbZ9k3hal0iP6OuPhcz7xY2ym/mug2w/t48sK2D1JsOtx3wp9+Gv70J3j4YfebEMsLdexu1qwZSUlJ5OTk+M3Pyck5bdmV+hIdHV3lQGw2m61y0rDCs5qGzeZ/DotEIMMwqj4fpFbuugs2b/aZ4dMRvWlcIW3b2gL+WPm/xI95J/8SAC7qBjbfBG9pqfszSoIqVOdBqGN3uNIT4CLSUOr949/hcA9qpnIullKjJPrevXt55JFHAl4/Nze3pu0REQlMOIx+eZokOsB55wHxp2nnuHGwfj0EMCiUu3Za5fnlNc0LXDHemQZQWMhJ05sojDGKKrcXSLAV0CV2L/ml8eSWJuAqtdHC8SO23/9eSfQIEQ6xe/DgwWzd6r1JZJomn376KQ888EDQjyUiEk42bqw4x/u94I6+W+jaNfD+bfemLiTKKKFV1CH69LkNfMY10UV4ZAmH2C0iIvVISXRLqlES/dxzz2X9+vUBr9+5c+caN0hExDKqq4nuq2IJGF9OJ7zyCvzzn/C73532UL4DkPgqT6KX90wH3DcYTp3ipCvRMyvOdsrbPpvNk48vr68+4/tb+feJiwB4v9OtJNpPnLY9Yh3hELszMzMZOnQou3btolOnTixatAi73c7EiRODfqxA6ZFwEQm1AyXNa7R+kv0ED7b6i3si6je8v97gi4NjKMXGjSd+pGk9tFFCIxxit4iIBF9pqTtvXmprQrR5CrvP+EsS/mqURN+wYUM9NcPadCEuEgIW6IkOQGHl+uZn3E85n/dYXRK9BPcxvzjV1jvT5aL0VDG7C8/xzHLair3bGwZGWU+48iP4lndxmXUYblzCTkPE7qKiIoYNG+bpCTdu3Dhat27N0qVLAXcN1wULFpCenk5sbCw2m401a9aQkBC6gXT0SLiINLSLLoLLDv+d5w+NxobJL/rmnHmj6kRF8a9PbKw88nMAripYoiR6BNF1t4hIZHrpJZg3D/jqGZ5r+SSXlmhQcCupURJdqqYLcZEQsEoSvaDA+7q6obxP11u9TJMm8HSPRUz7eLTf/GKzio9xl4svj6bw2IGbvU3F5yafTxL9hCuWf+ZdyrYCbw8mF6qpKjXjdDrPeME/atQoRo0a1TANEhEJQ2PGwPDP3qZD9Hec7cgltc3Vtd+Z3Y7dO+4xpcWu6tcVERGRsOB9eN3AhaFyLhajTImIWNOVV3pf33lnaNoQFeU/faYkenx81fuprid6BSVGVKV5xaajyp7jUSUn6RC9zzPdO36Hd6FhYBjemxC/2/8rjrtiPdOlpkKDiIhIMDRp4n2dmgo2w2RAwn/oErsXavo0zrhx7n87dQKHA3uUN16XloRB5wIRERE5LU8S3TBwmTYl0S1GPdFFxJo6dYI//hEOHYJf/CI0bQikJvqpU97XMTGVl0P1PdEr9LYvtTsrrfKb7+5hdPK6SvOdRjHTUxcw4/vb6B3/Ob3ifJLoZxhqXD3RpTFQKTYRaQjPPQf33Qfdu7t//FR3c706v/41XHIJXHghGAY2uzdeu0rUE10in2K3iFid59LfMCjFBqqJbilKoouIdQ0cGNrjV6xRXlUy/ITPAJ1xcVXvJ8Ce6IVULgdzpCSJFw9fU2m+0yimR9xOVnf8TeUd+ZRzqYp6oktjoFJsItIQLroIVq+uclgTiI2tYuZpOJ3Qv79n0u4wAAMwVc5FGgXFbhGxOm9PdNQT3YJqnSlZt65yz8dyDz/8cG13KyJiHRXrsleVRPd9VLtly6r3c4ae4eCOrQ99+vOAm+YwTtNDxzCY2GwVU85eVuVi9USPXIrdIiINr8oEOlT/hFqA7HbcOXRAHXMjl2K3iEjkqNQTXUl0S6l1puSuu+7ilG+ZgjIffvghL774Yp0aJSJiCRWT6FUlw++8032RHBMD06dXvR9XNb3HKu6/2qvwypzGaR4LMwxGJH3EmKZrq24OgR9HrEWxW0QkxAYP9r4+77w67cpmw/PdQOVcIpdit4hI5KhUE720tPJ1v4StWifR8/Pz+b//+z/ee+89AI4fP05GRgZpaWkcO3YsaA20gqysLLp06ULv3r1D3RQRaUgVk99VJdHPOcf9HPeaNdX3RA+gDprvhfIZtWqFs+lp6qyWtdOsJlnuUjmXiKXY7aXYLSIhkZkJkye7i6XXsRyFuye6kuiRTrFbRCRyVOqJDuqNbiG1ron+zDPPMGTIEO666y7++te/8vHHH9OkSRM2bNjA2rVV926MVKrNJtJIVdeDvKLExNMvDyBouvPeASTRz+sATidRT8+CWyaddtXqap+rnEvkUuz2UuwWkZA46yzIyAjKrtwX4u7vBiXF6sUWqRS7RUQih18S3SybKCmBqKiQtUkCV+skenR0NCdOnOCHH35gzZo1tGjRgueee47LLrtMvbpERGqiuiR6hce6YqJKqPwwbwVOJwCO7t3g179293SryGbjcEkS3xe38MzqFruHGakvYTNMzon6oQaNFytR7BYRiRytWkH3pL3YT52gSd73oW6O1BPFbhGRyOF9eN3wllFVT3TLqHUS/eabb6aoqIh27dqxZcsW2rZty7333suyZcvYunUrmzZtCmY7RUTCT7BG8brggqrnx8b6TTodrtMm0R1GKbf9Gi65pOzp7uoGLDMM7vrubr441dYzq2XUYTrE7KtRs8V6FLtFRCLH1VfD1X95Dn4ou/m9YgVcdVVI2yTBp9gtIhI5LrsM5s0D29Nv0Hr7NvfMAMq7Snio9TP7eXl5ZGZmsmnTJn7605+SlJTEvHnzGD16NN98800w2ygiEp6Cdcf4Jz+BRx6B9HR47TVwlN3ffPRRv9WiHKd/VLupPZ8JE6Bjx7IZnmfFKjAMDLz7SrIfJ952xj7uEgEUu0VEIswPPk+PPfZY6Noh9Uax20vjmYiI1Z19NvToAd1bHaSZI889Uz3RLaPWPdHHjh3LPffcU2n+oEGDuOWWW+rUKBGRsGWzeWuhBzPYjRjh/gF3T7KiIvegpD4c9tMn0T011cpVNxCpz3wDk3WdbnOXgSmqcavFYhS7vbKyssjKyqI0WE+UiIiEWqBjtYilKHZ7aTwTEYkYDp90rJLollHrnugvv/xytcsuvvji2u5WRCS8+fburq/kW4sWlRLoAD+caHLazX4sTWT9ep8Z1SXRbTZPT3SzrA7bDtf5rMgdwLKjaRwp0UVJpFLs9srIyGDHjh1s2bIl1E0REQmO1NRQt0DqgWK3iEgEUhLdkmrdE/1f//pXtcsee+wxrrnmmtruWkQkfNnt3pplDR7sqkmK+8jP9129+p7ohuHfq/29Y/149cBlALSNnul9tEwiimK3iEjkeOcdeK1kPq5v93FHi9e5pMWZvyeI9Sh2i4hEjoMHYccOcH3bgQ5FKbRx/qAkuoXUOomelpZW7TKjusRNhNIj4SKNSJ8+UH4x0759wx7b57P1qqR/sSJvAAAdo7/jq8LWgP8NbZ+hvyvtx+ZTE93EwIjybugyG9dneGOi2C0iEjmOHoUvHV2h0EZ+aTyU5J95I7EcxW4RkcixbRv89rfAgSuYFr2T9LPWKIluIbUu5zJw4EBcLpfnp6SkhOzsbJ588kneeuutYLYx7OmRcJFG5IEH4KKLoH9/GDOmQQ+d3me353WMzVvA/KQr2v0ivol/Ej2AmugAM/bfxuqDvTzTrtqHBglzit0iIpHDXWHOAMOgFLsuwiOUYreISOTw9HMzDMzyzmuK35ZR60xJxYBts9lo06YN06dPZ968eXVumIhIWGrWDF5+GZ59FqKiGvTQpYa3HnuMrdD94qyzOJmUAnFx0KqlX8n2anui+9REB1iT34/DRYmeaVcAZWPEmhS7RUQihyfmGwalps1bbk4iimK3iEjk8E2iezqvKX5bRq3LuSQmJlY5Py8vj127dtW6QSIilvL887B8OYwdW++HKjV9kuhGWU/0uDiOJHgHEguoJzr4JdHBAJt3Xd/jSGRR7BYRiRyeMG8Y7oHCdREekRS7RUQihzd2u8uqAuqJbiG1TqIPHjy40rzjx4/zxRdfMGnSpLq0SUTEOvr0cf80gFKXN9HtW87Fl1/n8+qS6Dab/8CiBmB4N1RP9Mil2O2l8UxExOp8k+iAkugRSrFbRCRy+PVEVzkXy6l1En3v3r1+QdswDBISEujevTuDBg0KRttERMTHsk/PBQ4CEGc7VTbXP+Htl0Tv29f7euJE72vD4JFWc9lyoiuPHPil++Lbpye6y1RN9Eil2O2VkZFBRkYG+fn5JCUlhbo5IiI15ptEd6knesRS7BYRiRz+sbvsultJdMuodRL9V7/6Fffdd18w2yIiIgHqEvM1z7b+I+/0/T3//DzBM9+v8/lZZ8Ff/wq7d8PIkfiu1DLqCK2dP/jM8ybOSzWwaMRS7BYRiRyVBifTRXhEUuwWEYkcVQ4sqpvgllHrTMnpAnlBQUFtdysiItWYN/EjmtqPMThhKxfE7KV/k894dMq+02/UvTuMHg2xsd55ZZl2z+NjGNh8yqCrJ3rkUuwWEYlAqoke0RS7vbKysujSpQu9e/cOdVNERGrFN4leaqonutXUS6bkyiuvrI/diog0aj3OPcKajrfzh3Oe83sMzOn0rtOiRQA7KovcnsfHDEiIKeFsRy4tHEeJMhTEGyPFbhERa/HrzaYkeqPU2GJ3RkYGO3bsYMuWLaFuiohIrXifHDc0sKgF1aicS/v27QNaLycnp1aNERGR07P5DggKYLfTty9s3OiebN48gJ0YBh8e/ylv5w7wTI/u+TW37r4nqG2V8KDYLSISmTp3httuA+Pl9XTN3eO+CDfN6gcWF8tQ7BYRiUx2OzidYIt2YT9Z6p6pJLpl1CiJHh0dTWZm5mnXMU2TWbNm1alRIiISIMPwG0y0tDSwbRb/+H9sPtHVM8tmVwmXSKXYLSISmTp2dP/wySb49Bv3zJISiIoKabuk7hS7RUQiU58+8O9/A299BI++5Z6pJ8kso0ZJ9Ntuu42JEyeecb38/PxaN8iKsrKyyMrKojSg7JWISBDZ7dh96pkH9DFk80+YDzj7Czqm2mFncJsm4UGxu2qK3SISMRw+l3TFxUqiRwDFbhGRCOcbu9UT3TJq1PVw+vTptG/fng0bNpx2vV//+td1aZPlqDabiISMYeA7plRA8dcwMPCWhXmk6+sM7nYw+G2TsKDYXTXFbhGJGL5Jc12IRwTFbhGRCKfYbUk16oner18/1q9fD8CgQYMwfOrtvf/++8FtmYiI+DPNyvNsNhISvJOxsQHsxzCw+STRTZudLd+m8Ob3GbhMG9c2fZ8+8Z/Xvb0SFhS7RUQiU1ERFBSAWZpIrMtJjK1Ij4RHCMVuEZEIV/EpMrGEGiXRfYP3/PnzMU2T66+/niVLlgS9YSIiUkFycuV5NhuZmdCuHVx0ETRtGsB+KvREN2129ufF815+XwAuafLf4LRXwoJit4hIZPrgA7j/fuD7qdwVY3JDs3d0IR4hFLtFRCLT/v2wYAGYX7ejV35fhiVuUk90C6lREt3XueeeC0BsbKzndTnTNP0Cv4iIBMHPfw5//KO761k5m42kJJgypYb78vmI/uveIXQ4z1tY3WWWVfpyuSrVTxdrU+wWEYkcnhBtGJjlgV1J9Iij2C0iEjl+/BH+8Q/geHOiT3ZQEt1i6iU7MmTIkPrYrYhI4+Z0lkVcH7VMcvtebi3+pj/Lt57jmfZciLtctdq3WJNit4iItXhyp4aBq/yyTkn0RkWxW0TEWnxvgHs6rymJbhk16ol+4MABXn31VUyfurw5OTlVzhMRkXrgqPCxXdskuuFTX92AYpdPT3Ql0SOKYreISGTyTaJ76EI8Iih2i4hEJm/s9um8pthtGTVKou/cuZOJEydWml9xnh4pExGpJ3a7/3Qtk+jFpu/Hv0FUlE+NdFNJ9Eii2C0iEpn8eqKbKucSSRS7RUQik19PdCXRLadG2ZeBAwficrnO+DNgwID6aq+ISONW8WKplkl0T6IcwAC73TvteSRcSfSIoNgtIhKZVBM9cil2i4hEJv8b4CrnYjU1yr784Q9/COp6IiJSQ0HqiT6txWs+UwZ2hzeJrprokUWxW0QkMvleiCuJHlkiJXZv376d9PR0Zs+ezdSpU3nppZf8lu/du5drrrmG8ePHh6iFIiINy78nupLoVlOjci69e/cO6noiIlJDFZPmtUyiu3zvoRqQeyLKM+kp7KIkekRQ7K5aVlYWWVlZlJaWhropIiK14n04zeeRcCXRI0KkxO7Dhw8zZcoU0tLSKC4uJiUlhTFjxpCYmAjA5s2bGT58OBs3bgxxS0VEGob38l2l2KyodtkXEREJjaAl0X3Lwhh8nRPrXVb+WJmSixLBMjIy2LFjB1u2bAl1U0REasWvnIupuqpSO0VFRdx///04HA6ys7MrLV+2bBm9evXi8ssvZ+DAgXz++ecB7zstLY20tDTPtNPpxO7zVOXYsWOJjo6uS/NFRCylyqfIFLsto0Y90UVEJMSCVM7FkygHMKB50xL65G3EwOS86H3u+aZZ9cYiIiISPmwGZmnZhXhRUWjbIpaSnZ3N9ddfT6dOnap8Mmvz5s1MmDCBrVu30rlzZxYuXMjw4cP54osvSEhIAKBv374UFhZW2nb16tW0atXKMz137lxmzJhBfHx8/b0hEZEwp4FFrU1JdBERKwlST/QFR670ThgGf77nW9o//hf/ldQTXUREJGxddBEsXAi2dzZx9sL33TP1SLjUwPHjx3n11VfZt28fCxcurLR81qxZjBgxgs6dOwMwfvx4pk+fzoIFC7j99tsB2LRp0xmPs3z5cvLy8pgxY0Zw34CIiMXExcHAgWArLOaC1dnumYrdlqFyLiIiVhKknuhfFbb2vP5pSg7t21Rx91s10UVERMJWkybQpQuc3/YUZzvy3DN1IS410K1bNzp06FDt8nXr1vnVXbfZbPTs2ZO1a9cGfIwlS5awe/duZsyYwWeffcauXbvq1GYREStr3hz++EeY/VgR48561z1TPdEtQz3RRUSsxDD8p2uZRO8U/S3fFqUCMHPIerBfUXklJdFFRETCn8Pnkk4X4hIkR44cIS8vj9TUVL/5qampAY8nsn79eqZOncrFF1/MypUrOXz4MHPmzKFTp04ArFq1irfffps9e/YwZ84cT+/2igoLC/1KxuTn5wPgcrlw6fuqNHIulwvTNHUuWI3d7h2lrLgYU7+/oKnPc0FJ9CDIysoiKyuryjpyIiJBFaQkumF4652bUU7/C/ByCuQiIiLhz/cpNV2PSJAUFBQAVBr4Mzo62rPsTAYNGkReXl61y0eOHMnIkSPPuJ8nnniChx9+uNL8Q4cOUaRxAKSRc7lc5OXlYZomtlpeG0oIFBbSrOzpseJjx8g/eDDEDYocp4s7daUkehBkZGSQkZFBfn4+SUlJoW6OiDQmtU2i459E3/x5PNN3vogLg8nN3mby2W/rQlxERCSM/fgjbNoE5v9Lof2pczk/5hvdAJegiYuLA6g0aGhhYaFnWUO5//77mTZtmmc6Pz+f1q1b07x5c5KTkxu0LSLhxuVyYRgGzZs3VxLdSkpLMaKiAHA4HMS0aBHiBkUOp9NZb/tWEl1ExMpqnUT3Mu0OSg0Hx12xABSbZaHBNCtvKCIiImEhOxt+9zsgvyMTT/VzJ9F1A1yCpFmzZiQlJZGTk+M3Pycnh/bt2zdoW6Kjoyv1iAd3jXYlDUXAMAydDxbx448waRKYpsElOZP5beor7oS6fndBU5/ngX5LIiJWVssAseNUO8/r1V91xBblfRS8tDw06EJcREQk/Bk+z5cpdksQDR48mK1bt3qmTdPk008/ZejQoSFpT1ZWFl26dPEb7FRExEpME/bvhwMHDI64mrpnajwTy1ASXUTEyirWSA9QbkmC5/X3xxIx7N5wYJpl+9Qj4SIiImHL9z66YrfUh8zMTFavXs2uXbsAWLRoEXa7nYkTJ4akPRkZGezYsSPggU1FRMKN7+W7aZR1ZFMS3TJUzkVExMp8BxOrAdOnoIvNYWBzeK/EXeX3V3UhLiIiErY8F+KG4Y3d6okuNVBUVMSwYcPIzc0FYNy4cbRu3ZqlS5cC0KdPHxYsWEB6ejqxsbHYbDbWrFlDQkLCafYqIiLV8b0B7ipPopcNMCrhT0l0ERErq2VPdJdPEt2w2ysk0dWbTUREJNx5vwIY3pvjSqJLDTidTjZs2HDadUaNGsWoUaMapkEiIhHOL4luK0vJqie6Zaici4iIldWyJ3qPuC89rxObuDCivPdU9Ui4iIhI+PP2RMdbE12xWyKYaqKLiNX5lXMpz6griW4ZSqKLiFhZLXuij0z6yPP67KalKucijY4uxEXE6ry92QzvDXD1RJcIpproImJ1VZZzURLdMpREFxGxslr2RHeZPjXRo+wYDu9+TJVzkUZAF+IiYnW+PdF1A1xERCT8+Q0KriS65SiJLiJiZbXsiV6KN2luj7Jhi/JOu1TORUREJOypJro0NnqKTESszjeJXqokuuVoYFERESurZRLd9Hltczpofa6Nx3+ShQG0cea4FyiJLiIiErYcDkhKAsNRSuzxU+6ZSqJLBMvIyCAjI4P8/HySkpJC3RwRkRrzq4muJLrlKIkuItIIPZkzyfN678F4ks6yMyxxk/9KuhAXEREJWx07wrp1wPZvYNLr7pm6AS4iIhK2HA7IzHT3SD/7xY/hCFBcHOpmSYCURBcRaYRaR/3ArsI2AJx3bknVtdVNs/I8ERERCS9+z4brBriIiEi4stlg9OiyiVVfu5Popum+CW5Txe1wp9+QiEgj1C12j/f1+cVVl4XRhbiIiEj4c/j0i1LsFhERsQbf+K2SLpagJLqIiNVceaX734suCs7+HFGcOgXbT57Hfws6sK+ohXu+HgkXEREJf7491xS7JYJpYFERiShKoluOyrmIiFhNZiYMHgzdu9d6F4bP0KKm3cH+/TAp+0EAfpH8Ab9r+ZIuxEVERMLYoUPw5z+D+WMzLj46iGuarlfsloimgUVFJBJ8+607XDsLm9GqfKbqoluCkugiIlYTEwMDBtRpFybe8i2mI8p/lHCzbEIX4iIiImHrxAlYvRooisNxsoM7ia6ebCIiImHt2mvdZdC7nLyKhbGr3TMVvy1B5VxERBqhN3MHeV6/93ET/yfBy0OD6qqKiIiELe8NcAMXugEuIiJiBZ74bfhchKsnuiU0yp7o27dv5/HHH+fiiy9m9+7d9OnTh5tvvtmzfO/evdx9993ExcXx2muvhbClIiL1zxZl9+uJ7rkQN82qNxAREZGQ816E+zxhpiS6iIhIWCuP36ZvT7aiotA0RmqkUSbRDx8+zJQpU0hLS6O4uJiUlBTGjBlDYmIiAJs3b2b48OFs3LgxxC0VEal/hsPu1xPdU85FPdFFRETClm9PdE/s1uPgEsGysrLIysqiVN9RRcTCyuO3y+aTkj11KjSNkRoJ23IuRUVF3H///TgcDrKzsystX7ZsGb169eLyyy9n4MCBfP755wHvOy0tjbS0NM+00+nEbrd7pseOHUt0dHRdmi8iYhkVk+ieci7qzSYiIhK2PLFbPdGlkcjIyGDHjh1s2bIl1E0REam18vht2rx5SAoLQ9MYqZGw7ImenZ3N9ddfT6dOnaq8y7x582YmTJjA1q1b6dy5MwsXLmT48OF88cUXJCQkANC3b18Kq/gjXL16Na1aeca/Ze7cucyYMYP4+Pj6e0MiImFmcMJW3j/WC4Bz2/uXc/EUcdGFuIiISNhSTXQRERHrMg0l0a0mLHuiHz9+nFdffZXJkydXuXzWrFmMGDGCzp07AzB+/HhKSkpYsGCBZ51Nmzaxbdu2Sj++CfTly5eTl5fH7bffXr9vSEQkzHSI/s7zOvksm39NdFM90UVERMKdb010D5VzERERCWvemuhKoltNWCbRu3XrRocOHapdvm7dOnr37u2Zttls9OzZk7Vr1wZ8jCVLlrB7925mzJjBZ599xq5du+rUZhERKym9YQLEx0OrVtgdhsq5iIiIWIw3iW7oBriIiIhFqJyLdYVlOZfTOXLkCHl5eaSmpvrNT01NDbg22vr165k6dSoXX3wxK1eu5PDhw8yZM4dOnToBsGrVKt5++2327NnDnDlzqu2pXlhY6FcyJj8/3/3CNL3lECowXS5wuTBM/zVM06zZl16Xy6/TCabp3ndNt6vQrlCo2J5QtkWCx+VyYZomLv0uw5LrJz+BNuVnnwvTBM49F775BhN3SRedi8Glc6Futm/fzuOPP87FF1/M7t276dOnDzfffLNn+d69e7n77ruJi4vjtddeC2FLRUQaht+g4CrnIiIiYgl+PdHLK1hrYFFLsFwSvaCgAKDSwJ/R0dGeZWcyaNAg8vLyql0+cuRIRo4cecb9PPHEEzz88MOV5heXlFBiVp1Gzz1yhNL4eJqcOEF0cbFn/sljxyg4eDCA1rs5c3NJ8Nm+tKiI3AC2tx0+TFOf7coVHDvGyRocP5iaFhVh82lT/tGjFIeoLRI8LpeLvLw8TNPEZgvLh14atZ07m1Bc7P4c3b8/n9ati/nbWwYx720l+YU/U1JczPG8PAp1LgbN6eKOnNnhw4eZMmUKaWlpFBcXk5KSwpgxY0hMTATc46UMHz6cjRs3hrilIiINIyYGhg8Hm8uk6+s73TOrGE9KJFJkZWWRlZVV5bhpIiJW49cTXUl0S7BcEj0uLg6g0qChhYWFnmUN5f7772fatGme6fz8fFq3bk2Uw4HDUfV/bbNmzaBFC4z4eIiK8sxvkpBAkxYtAj94cjKGz/YOp5MWgWxfUuK3XbmEhAQSanL8IDKcTr//i6ZNm0KI2iLB43K5MAyD5s2bK4keho4fNzynXWJiUzwP9/w3HiPaBKJISkrSuRhETqcz1E2od0VFRTz44IPMnj2b3bt307ZtW7/ly5YtY+bMmcTGxmKz2Xj++efp2rVrQPtOS0vzm3Y6ndjt3i+eY8eOZf78+XV8ByIi1pGYCDNnAsUmvPeue6aSixLBMjIyyMjIID8/3/09VUTEgpYscf/r2LgTZpfNVDkXS7BcEr1Zs2YkJSWRk5PjNz8nJ4f27ds3aFuio6Mr9YgHwDCqLJkCYNhs7mcvDaPCJob/M5lnUnFdw3Dvu6bbVWxXGAintkjdGIaBzWZTEj0MPfYYPPQQtG4Ngwcb3o8kn9+VzsXgivTzIDs7m+uvv55OnTpV2UNs8+bNTJgwga1bt9K5c2cWLlzI8OHD+eKLL0hISACgb9++lW6SA6xevdpvYPC5c+cyY8YM4uPj6+8NiYhYhc8NRZVzERERCW+ey5oUn7ygkuiWYLkkOsDgwYPZunWrZ9o0TT799FMeeOCBELZKRMQ6WrWCefNC3QqJJMePH+fVV19l3759LFy4sNLyWbNmMWLECDp37gzA+PHjmT59OgsWLPCMPbJp06YzHmf58uXk5eUxY8aM4L4BERGr8r1Jq57oIiIi1uDbKVdJdEuwZLe4zMxMVq9eza5duwBYtGgRdrudiRMnhqQ9WVlZdOnShd69e4fk+CIidVVUBH/5C8x7ty2r8vqHujliQd26daNDhw7VLl+3bp1fnLTZbPTs2ZO1a9cGfIwlS5awe/duZsyYwWeffeb5HiAi0uiVJ9KVRBcREbGGmBjva9VEt4Sw7IleVFTEsGHDyM3NBWDcuHG0bt2apUuXAtCnTx8WLFhAenq6p67qmjVrPI+DNzTVZhMRqysuhhdfBHLb0i+/PyOTPgp1kySCHDlyhLy8PFI9xffdUlNT2bJlS0D7WL9+PVOnTuXiiy9m5cqVHD58mDlz5tCpUycAVq1axdtvv82ePXuYM2eOp3d7RYWFhX4lY/Lz8wH3OA6uCmUQjAqDhJsul0olSERzuVyYplnpXJDwlJ8Po0e7HwXv/X0Gj7f8M5SWuj+rJCh0LoiISLAtXw4nT0L8kWZcVT5TPdEtISyT6E6nkw0bNpx2nVGjRjFq1KiGaZCISITzHabBVe2oDiK1U1BQAFBpHJHo6GjPsjMZNGgQeXl51S4fOXIkI0eOPON+nnjiCR5++OFK8w8dOkRRUZHfvKZFRdiKiz3T+UePUnzwYEDtFbEil8tFXl4epmlG/DgOkeDYMYNDh84CIL8khpLiYkoKCsjT51TQnC7uiIiI1Mbzz8OPP0KrZJ8kunqiW0JYJtFFRKRh+eZKTFNJdAmuuLg4gEqDhhYWFnqWNZT777+fadOmeabz8/Np3bo1zZs3Jzk52W9dw+mEqCjPdNOmTaFFi4ZqqkiDc7lcGIZB8+bNlUS3gNhYiIpyx2ybw44jKgpHVBTR+pwKGqfTGeomiIhIhCnvwGYaPt+11BPdEpREFxERvyS6y5rDZUgYa9asGUlJSeTk5PjNz8nJoX379g3alujo6Eo94sFdo71S0tDwv6Fk2Gz+J4tIBDIMo+rzQcKOw+dKzsTufo7M5XJ/VklQ6DwQEZFgK7/EcGH3zlQS3RL0rSAINLCoiFidb67QrH41kVobPHgwW7du9Uybpsmnn37K0KFDQ9IexW4RsTq/UmxG2YW4BhaVCKbYLSKRoPz+rOl7o1blXCxBSfQgyMjIYMeOHQEPjiYiEm78eqKbCg0SfJmZmaxevZpdu3YBsGjRIux2OxMnTgxJexS7RcTq/B6W8XRr00CYErkUu0Ukkqici/WonIuIiFQYWFRJdKm5oqIihg0bRm5uLgDjxo2jdevWLF26FIA+ffqwYMEC0tPTiY2NxWazsWbNGhISEkLYahER6/LviV4Wu9UTXUREJKx5aqJjuHuzuVxKoluEkugiIqJyLlJnTqeTDRs2nHadUaNGMWrUqIZpkIhIhPMfz0TlXERERKzAU87FNCA6Gk6eVDkXi1B3QxERwTB8ngRXORdpBFRXVUSsTuVcRERErMfTE92kQjCXcKdMSRDoQlxEIkG3bnBhm3zOi94X6qaI1DvVVRURq/PtiV6qnugiIiKWYuoRcMtROZcgyMjIICMjg/z8fJKSkkLdHBGRWnnlFWDZpzDzr6FuioiIiJyBzQYPP+zuxHbW7LVwDCXRRUREwtw554DDAcnJwO5Qt0ZqQkl0ERERERERizEMGDmybGL+1+4kusq5iIiIhLXnn/eZGBCyZkgtKIkuIiIiIpZQWlpKcXFxqJsRsVwuF8XFxZw6dQqbTVUf61NUVBR2uz14O7SrnIuIL5fLRVFRUaibIRIUQY8ZIlIrSqKLiIhIo5OVlUVWVhalSjhZgmma5OTkkJubG+qmRDTTNHG5XBw7dgxDA13Vu+TkZFJTU4Pzf11+00OfaSIUFRWxd+9eXHoyQyJIUGOGiNSKkugiIgJARgYUfNGDlt/fxuM/ef7MG4hYmMYzsZbyBHqLFi2Ii4vTBWQ9MU2TkpISHA6H/o/rkWmaFBQUcPDgQQBatmxZ63199ZU7b+4sSKU9O1XORRo90zQ5cOAAdrud1q1b66kasbxgxgwRqRsl0YNAvdlEJBJ8/jkc35fIsVPnhropIiIepaWlngR6s2bNQt2ciKYkesOJjY0F4ODBg7Ro0aLWj+lPmgSFhdDxxzH87awPwDTdiXQlDiUCBXLdXVJSQkFBAa1atSIuLq4BWydSf4IVMyQ8PPkk7N8PMTHwh1A3RmpE366CICMjgx07drBly5ZQN0VEpNbKr7ddKHEiIuGjvAa6kiESacr/putS598bu30u69QbXSJUINfd5Ql2p9PZUM0SaRDBiBkSHj79FP79b/j441C3RGpKSXQREQGgvNOhqSS6iIQh9YyWSBOMv+nyXbjw6ZWoJLqIYoZEHP1NRw7PdbcZ2nZIzSmJLiIigE9vNlOhQSJfVlYWXbp0oXfv3qFuiohIrZU/0e/3FJlKTIqIiISt8utuJdGtR5kSEREB1BNdGheVYpP61LZtW9LS0khLS6Nfv34YhkH37t0985KTk8nOzvas//7772MYBh9++GGlfd122220bduWmJgYz/YXXXQRffr0YcOGDZ71VqxY4XesgQMH0qdPH4YMGcKiRYv89llx3RdeeMGz7M0336R///4MHDiQgQMH0qtXL+644w4OHDhQ5Xv99ttvSUtLIyYmhrZt2zJ16lTPsnnz5tG9e3cMw6Bfv34sW7as0vrl76n8JyYmppb/642TN3arnIuIVVk5ZvzjH//g0ksvVcwQqQH1RLcuDSwqIiKAaqKLiARTebIiOzubdu3a8cwzz5CWlgbg+bfc4sWLsdvtLFq0iMsuu8xv2fPPP89DDz3E/Pnz/RIgmZmZ/OIXv2D37t00b96cq666iosuuqjSsbZt20Z6ejorV65k8eLFGIZR7bobNmzg5ptv5uOPP+bCCy8E4H//+x/9+/dn7NixtGzZstL7bNOmDRs2bKBt27ZMmjSJhx56yLNsypQpdOrUiUGDBrFkyRLatm3rOU5V6wOedSQwVdZEV090EcuxasyYOHEin3zyCd26dQMUM0QCoSS6daknuoiIACrnIiISLHfeeedpl0+aNInk5GQAioqK2LRpEzfccANLly4NeMCw9PR08vPz+eSTT067Xvfu3Vm9ejXLly/36z1YlRUrVnDBBRd4kiEAF154ITfeeCPR0dEBtauuXn755QY5TqRQEl3E+qwcM7p06aKYIVJDnvFM9OCY5ShTEgSqqyoikcD7SLiIiNRFTRIiq1evZvjw4YwfP54jR47w7rvvBnSMkpISAGy2M3+db9u2LVdffTVZWVmnXc/pdLJr1y6+++47v/lZWVn1/j13w4YNTJo0icGDB9frcSJNlUl0XZWLWIqVY8bOnTsVM0RqSDXRrUtJ9CBQXVURiQSeO+IKDSIiDWbx4sWkp6czePBgUlJSWLx48Rm3KSkp4c9//jMdO3YMOIHQu3dvduzYwYkTJ6pd58Ybb6S4uJgLL7yQO+64gw8//BCXErJhTT3RRRqXcIwZ3bp1U8wQqQUl0a1HNdFFRASAcePgxIfZxK9ZHeqmiIic2Y03wpEjDXvMZs3g1VeDtrtjx47x1Vdf0aNHDwCuu+46Xn75ZQoKCoiLi/NbNycnh7S0NIqKivjss88YO3YsmzdvJjY2NqBjJSYmApCXl0d8fHyV63Tt2pUPP/yQJ554ghdffJE5c+Zw7rnn8sADD3DLLbec8RgVa/AC5ObmBrR+bm4u3bt3D+StiA89RSYSgFDEC2gUMWPTpk088sgjihkiNaCe6NalJLqIiAAwfjwQnw1b/xnqpojUu6ysLLKysihVj03rOnIEDh4MdSvqZNmyZVx99dWe6fT0dP785z/z1ltvcf311/utm5qa6kkeLF68mIkTJ3LbbbfRq1evgI6Vl5cH4CkJUJ0LL7yQN954g/z8fFasWMGf//xnpkyZgsPhYPLkyafdtqpB3zZs2MCgQYPOuP6GDRuYP39+IG9FfJTn5xwPL4KPQtsWkbAVAfECwjdmLF26lLy8PMUMkQBdcQV07eq+EW6+BUaoGyQBUxJdREREGp2MjAwyMjLIz88nKSkp1M2R2mjWzPLHXLx4MUePHmX9+vWeebGxsSxatKhSQsRXeno68+bN45FHHmHFihUBHWvLli1069atUm9FX7m5uTgcDpo0aUJSUhI33ngjN9xwAz169OCtt946Y0KkLtLS0khLS6u3/Ueqs84qexFdGNJ2iIS1UMSLejhuOMaMmJgYYmJiFDNEauCGG3wmAjslJUwoiS4iIiIi1hPER+RD4eDBgxQUFLBp0ya/+b/73e+YNWsWR44codlpEjB33303v/jFL9i5cyedO3c+7bGys7N56623eOaZZ0673jPPPEPHjh25wefqzmazcd555wVcAqCuVq1axcCBA2nSpEmDHE9EGgGLxwsI35hx/vnnM27cOM88xQwRiWQaPU5ERAA4dQpOnLJzvLRhvvSKiDRmr7/+OmPHjq00/4YbbqC4uJilS5eedvsrr7ySjh078vTTT592vW3btjFixAiuvfZapkyZcsZ2ZWVlcfToUc/0//73P9atW8d11113xm2DYfbs2Rw+fLhBjiUi9Wv79u2kp6cze/Zspk6dyksvvRTQMqksXGPGc889p5ghIo2GeqKLiAgAEybA159eTtwP5/Cvzmf+0iwiIqf3zjvveOq33nnnnfzyl7/k9ttv59lnn+Xxxx+ndevW9OvXj549ewJQWlrKr371KxwOBw899BAHDhzg0KFDrF692jNI3GOPPcZll12GYRjceeed3HXXXezcuZNRo0bxt7/9zXOs5ORkCgoKSEhIYMaMGaSnp3vatWLFCh5//HHPulOnTuXWW29l1KhR7N+/n2HDhpGQkEBJSQnFxcU8//zzXHXVVVW+x2+//ZYJEyaQk5PD/PnzOXDgAC+++CIA8+bN4/nnnwdg3Lhx3HffffTo0YOxY8dy4MAB/vrXv/LOO+/47W/Hjh3B+wU0Am+9BUePgv3zHtzI+6Fujoifw4cPM2XKFNLS0iguLiYlJYUxY8aQmJh42mWNlRVjxoEDB7jiiisUM0SkUTBMU+PB1pXv4GS7du0it3t3kuz2qldeuhTatYMHHoA1a7zzx4+HO+8M/KDvvw/Tp3unW7WCQOqb7d8PVQW0W2+Fm28O/PjBNGgQHDvmnX7+eejTJzRtkaBxuVwcPHiQFi1aYLPpoRcrGDsW9vy/o8TkfMOH5/8Sfv/7qj8vpFZyc3Np2rQpeXl5jfoCMdyU10Q/evRo5cGzRozwH4js6adhwIAGbZ/AqVOn2Lt3L+3atSMmJibUzYlopmlSUlKCw+HAMDTMVX0Lxt/2ddfB119D3A9f86+Usp6fq1dDixZBbGnj1Rhid1FREQ8++CCzZ89m9+7dtG3b1m/5smXLmDlzJrGxsdhsNp5//nm6du1a4+MUFxfTunVr9uzZQ3x8fMDLqnK62K2YIZGqur9tXXdbz223wdatYJrwUfRgnKfyoX17eOONUDctItRn7FZP9CDQ4GQiEgnKv3O5ND64iIiIJXhit6nYLTWXnZ3N9ddfT6dOnSgtLa20fPPmzUyYMIGtW7fSuXNnFi5cyPDhw/niiy9ISEgAoG/fvhQWVh7YdvXq1bRq1cozPXfuXGbMmFFlkvx0y0REIk1pKbhc7temrr0tRbepREQEAHU6lMYkKyuLLl260Lt371A3RUSk1pREl7o4fvw4r776KpMnT65y+axZsxgxYoRnIMrx48dTUlLCggULPOts2rSJbdu2VfrxTaAvX76cvLw8br/99krHON0yEZFI5PvAgJLo1qIkuoiIAL490RUaJPJlZGSwY8cOtmzZEuqmiIjUWvkNcCXRpTa6detGhw4dql2+bt06v5vNNpuNnj17snbt2oCPsWTJEnbv3s2MGTP47LPP2LVrV0DLREQilW/nNcVva1E5FxERAXx7symJLiIiYgXqiS715ciRI+Tl5ZGamuo3PzU1NeAb0OvXr2fq1KlcfPHFrFy5ksOHDzNnzhw6dep02mUVFRYW+pWMyc/PB9y1oF3lNRHKuFwuTNP0/IhEivK/6Yp/9+V/8xXPBQlfpk/MNst+ME1M/Q6Doj7PBSXRRUQE8N4R1+WGiIiINZQn0fU4uARbQUEBANHR0X7zo6OjPcvOZNCgQeTl5dV4WUVPPPEEDz/8cKX5hw4doqioyG9ecXExLpeLkpISSkpKAtq/iBWUlJTgcrk4cuQIUVFRnvkul4u8vDxM09TAohZRWJhAcbETgCKjGGdxMSWFheQdPBjilkWGQGNLbSiJLiIigP+FuGmiy3EREZEw54ndZlnsVvCWIImLiwOoNGhoYWGhZ1lDuf/++5k2bZpnOj8/n9atW9O8eXOSk5P91j116hTHjh3D4XDgcCjdIZHD4XBgs9lo1qwZMTExnvkulwvDMGjevLmS6BYRF2dQfh/EHhWNw4zCER1NdIsWoW1YhHA6nfW2b0UVEREB/C+8TQwl0UVERMJc5dit58kkOJo1a0ZSUhI5OTl+83Nycmjfvn2DtiU6OrpSj3hw12ivmDS02WwYhuH5EYkU5X/TVf3dVzdfwpP/r6nsutswMPT7C4r6PA/0GxIREUCjhIuIiFiNb+zWwOASbIMHD2br1q2eadM0+fTTTxk6dGhI2pOVlUWXLl38BjsVEbEa3d+zLvVEFxERADIzoaDrpxh/naeebCIiIhbQpg0UFICt4KAitwRdZmYmQ4cOZdeuXXTq1IlFixZht9uZOHFiSNqTkZFBRkYG+fn5JCUlhaQNIiJ15ZtE1w1wa9FvS0REAOjQAS5qm8+FsXuwGboUFxGpi9LSUh5//HF69+5NWloa/fv3Z8CAATz44IOhblqD2rBhA/Pnz6/TPj744AP69euHYRhkZ2cHvN2XX37JLbfcwsCBA7n88svp06cPf//73yutt2PHDtLS0rj88svp1asXb775ZqV1XC4XTz/9NLGxsWzYsKE++n2nAAAfs0lEQVTS8rfeeosrr7ySK664gssuu4yePXvyxhtv1ORt1srvfw+LF8NrVy4hyiit9+NJZCkqKiItLY0777wTgHHjxjFmzBjP8j59+rBgwQLS09O5/PLL+ctf/sKaNWtISEgIUYsjl2KGm2KGNAZTpsAzz8Czz0K87WSomyM1oJ7oQZCVlUVWVhalpfriKiIiIiIwc+ZMli5dyocffujpMTl//nx++ctf8vDDD4e4dQ1nw4YNbNiwgUmTJtV6HwMHDmTJkiW0a9euRts99dRTFBUV8f7772O321m3bh3Dhg1jzZo1nnIUx44dY9iwYcycOZOJEyeya9cuevbsyTnnnEOfPn0AOHr0KKNHj+a8887j1KlTVR7rhRdeID09nQkTJgDw9ttvc/XVV3PBBRdw4YUX1vq9i9Qnp9NZZYLP16hRoxg1alTDNOgMIvm6WzHDTTFDMaMx6NLFZ8IWeZ9nkUw90YMgIyODHTt2sGXLllA3RURERAKguqpS35YvX87PfvYzv5IDkyZNokePHiFsVePStm1b7r77bux2OwBDhgzhggsu8OvtN3/+fEpLSz2JjE6dOvGzn/2MP/zhD551Tpw4waxZs/jtb39b7bFmzpxJenq6ZzotLQ2Xy8Xu3buD/bZEGq1Ivu5WzAg9xQwRORMl0UVEBIBt22DtZ815N78vJaY91M0RqVeRfCEu4cHpdLJx40YKCwv95m/evBmAnJwc0tLSMAzD0xP02WefpW3btqSlpXnWv/LKK0lOTubee+/lV7/6FX379qV3797s2bOHpUuXMmLECDp06MDChQs928yYMcOznz/84Q8MGjSIjh07snr1aj777DOuu+46OnfuzK9//Wu/ti1dupQBAwYwePBg+vTpw7Rp0yq1v6IDBw4wevRoevXqxWWXXcbEiRP58ccfAXj66aeZP38+27ZtIy0tjbS0NE6erPqx5eeff56+ffsyaNAgevfuzcyZMzHNupUWmzFjBj/96U/95sXExFBUVOSZXrt2LT179sTwKVDau3dv1q5d65k+55xz6NWr12mP1bNnTxwO90O+xcXFzJ49my5dunDFFVfU6T2ISONg1Zhx6aWXMmjQIMUMxQyRRkFJdBERAeCllyDzta789vsMTrmcoW6OiIilTZkyhU8++YQLLriAmTNn8uWXX/otT01NrVRG4Te/+U2lR9hXrlxJ9+7defPNN3n00UfZtGkTnTp14sYbb8TlcrF69WqysrLIyMjg+PHjADz22GNMmjSJrVu30q9fP9avX8/06dO56aabWLNmDW+88QYff/wxL7/8Mh988IHnWG+88Qb33nsv77//Ph999BFffPEFs2bNOu37vOaaa+jQoQNbt25l48aNREdHe3rXTZs2jUmTJtG9e3fPI/qxsbFV7mf+/PnMmzeP9evXs2HDBt544w1effXVQP6rA5afn8/nn3/uV/P566+/JjU11W+91NRU8vLyPImdmsjIyKB58+asW7eONWvW0KRJkzq3+3Systy1VW9Zcy3HS6v+vxWR8GfFmPH666+TmZnJ+vXrFTMsEjMkPOzeDZs3w6ZNUORSlW0rURJdREQAjRIuItazaBGMGHHmn2nTKm87bVpg2y5aVLu23XTTTbz11lu0bNmSGTNmcMEFF9CvXz82btxYq/0NGjSI5s2bA9C/f3/+85//cO211wJw2WWXcfz48UqPgaempjJgwADPNj/88AOXXnopAGeddRYXXHAB//nPfzzrz549m5EjRwIQFRXF1VdfzT//+c9q2/T+++/zySefcM899wBgGAZTpkxhzZo17Nmzp0bvb8mSJZ4egPHx8YwYMeK0x66Np556iqFDh3reI0BBQQHR0dF+65VPFxQU1PgYWVlZHDlyhCFDhtC/f38OHDhQt0afwe7d8Omn8J8ffqKnyCTi1aUUWzjHC7BmzHjqqae48sorAcWM8mU11dAxQ8LDvHlw222QkQFHSzRQs5XoloeIiABg88mb1+1hSBGRhnHiBBw8eOb1UlIqzzt6NLBtT5yoebvKXXXVVVx11VV8++23vP766zz77LMMGTKE7du306lTpxrtq2XLlp7XcXFxnH322Z5HwePj4wHIy8s77TYV58XHx/ttc+LECSZMmMB3332H0+kkJyfntI/mb9++HZvNxujRoz3zSkpKOPfcczlw4ADnnXdewO/vwIED3HXXXRw+fJioqCiys7NrPCjc6bz33nssX76cf/3rX37z4+LiKr3H8uny/7OastvtPPTQQ8yfP5+nn36a2bNn167RAdANcGlMMjIyyMjIID8/3692eCDCPV6ANWPGDTfcwDfffKOYgTVihoQH/+tuo/oVJewoiS4iIoB/MHeZuhAXkfAXHw8tWpx5vaZNq54XyLZluYYay8nJ8Tzy3aZNG+69917Gjx/Pueeey+rVq6tNiJSWllY5v3ygs+qmgUr1YKtap+K88m2OHz/OkCFDGDNmDIsXL8ZutzN//nweeuihqt+gj3Xr1lV5rEB98803XHHFFTzyyCOeHooPPfRQpdIFtbV161buvvtuVq1aRXJyst+y9u3bk5OT4zcvJyeHpKQkzjrrrICPUVRUhNPpLYVms9no2LEjO3bsqFPbz8T3v92lC3GRaoVzvABrxozBgwczduxYFi1ahM1mU8ywQMyQ8OB7A1xJdGtREl1ERAAFcxGxnhtucP/UxtNPB7ctFY0bN44lS5b41U5t2bIlCQkJfjVPExISPHVpAb7//vv6bVg1vvzySw4ePMi1116Lreyuqu9galW58MILcblcfPXVV5x//vme+bfeeiuPPfYYzZo18+wL4NSpU9jtdqKiovz2s2XLFk6ePMnYsWM988507EDt2LGDyZMns2zZMlq3bg3AvHnzmDJlCgBDhgzhiSeewDRNz0BxW7duZejQoTU6To8ePdi+fbvfvAMHDtC/f/8gvIvq+fVE1w1wkWqFc7wA68aMMWPGKGZYKGZIePC77tYj4Jaib1oiIgJU6ImuJLqISJ3NnDmTkpISz/Srr75KaWkpw4cP98zr3r07H330EQA//PAD69evb/B2grt3XWxsLOvWrQPcvRvfeuut024zaNAgLr30Uh577DFcLhcAS5cu5csvv6RZs2YANG/enKNHjwLuQePefffdSvu54IILMAyDtWvXAnDy5MmAatsOHjyYBx54oNrle/fuZcSIEdxzzz3k5uaydetWtm7dyuLFiz3rTJ48GbvdzmuvvQbAV199xT//+U+mT59+xuP72rFjB6tWrfJMv/baa+zcuZOJEyfWaD81pUfCpTGpS010K7BizCj/3FbMsEbMkPCgzmvWpZ7oIiICqDebiEgwTZs2jYULF3LppZd6aqgmJyfz7rvvenq3ATz99NNMnjyZf/3rX3Tt2pXRo0fzl7/8hSuvvJKVK1cybtw4tm3bRnZ2NomJiaSmpvLkk0+Sk5PDsGHDWLJkCddccw0Ad955J08++STbtm1j/vz55ObmMmHCBDIzM7npppsAd2/Hl19+2bNednY2MTExZGZmsmjRIu677z7ee+89WrVqRUpKCuvWrWPIkCGe5HpFb775Jr/5zW/o1q0bKSkppKSk8Prrr3uWX3vttbzyyitcdtllJCUlVdlbr2vXrrzwwgs88sgjvPLKK6SkpHDeeeexdu1abrjhBqZMmcJ9993naf9TTz3FZZddxsmTJ09bf3f69Ol88803TJo0yW/+wIEDPa8TEhJYs2YNt912G/PmzePkyZPMnz+fPn36+G1zzTXXsH//fs//c3Jysl9JgmeffZaZM2fy5JNPUlpaimEYrFixgssuu6za9gWDf010XYhLZKtLTfRwZ8WYsXjxYu677z7eeecdxQyLxAwJD0qiW5dhViyEJbVWHsxzu3cnqboaX0uXQrt28MADsGaNd/748XDnnYEf7P33wfduZ6tWsGLFmbfbvx+uuqry/FtvhZtvDvz4wTRoEBw75p1+/nmoEITEelwuFwcPHqRFixZ+j+VJ+Jo+Hd5/8ygcOMDqDr+hxaN3VP15IbWSm5tL06ZNycvLIzExMdTNkTLlsfvo0aOV6l4yYoT/SGJPPw0DBjRo+8T9OPfevXtp164dMTExoW5ORDNNk5KSEhwOh+cxdak/wfjb/u1v4d13gX37eDvlZlpGHYHVqwMr4CxnpNgdnk4XuxUzJFJV97et627r+d3voPzhieX2azmn9Bto3x7eeCO0DYsQ9Rm7dYaJiIiIiIiIiIiIiFRD5VxERASA6GiIiy4F2ykM9JCSiIiIiIiIiAgoiS4iImUefRTosRFmzgx1U0RERCQAAwe6qzqyfCvxR06FujkiIiIiEUtJdBEREREREQsaPtz9w7f/hvdPhLo5IvUqKyuLrKwsSktLQ90UEZFae/hheOgh92tb2iE4GdLmSA2oJrqIiIg0OllZWXTp0oXevXuHuikiIiISgIyMDHbs2MGWLVtC3RQRkVqz2cBud/9oHHdrURI9CHQhLiIiYi26ELcel8sV6iaIBJX+pkXqj2lqfB+JLIoZIqGnci5BkJGRQUZGBvn5+SQlJYW6OSIitfL3v8MX/+gMB27mNy2WkBjqBomIAE6nE5vNxv79+2nevDlOpxND3XbqhWmalJSU4HA49H9cj0zTpKioiEOHDmGz2XA6nbXeV0kJuFxAqZ0oUz3aRKKiojAMg0OHDtG8eXN9lonlBTNmiEjdKIkuIiIAbN4M729pCbkDmXr2m0qii0hYsNlstGvXjgMHDrB///5QNyeimaaJy+XCZrMp8dQA4uLiaNOmDTZb7R8O/v3v4d13gX0ZvJ3yKS2jjgSvgSIWZLfbOeecc9i3bx/Z2dmhbo5I0AQjZkh4WLMGdu50v55YEk8SBaFtkARMSXQRERERCWtOp5M2bdpQUlKiAeXqkcvl4siRIzRr1kwX6fXMbrerx79IPWnSpAkdO3akuLg41E0RCQrFjMjy4Yfwz3+6X19jj0P1LKxDSXQRERERCXuGYRAVFUVUVFSomxKxXC4XUVFRxMTEKIkuImEnKyuLrKysgG6m2u127HZ7A7RKREQaC307FhEREREREZGwpkHBRUQklJREFxERERERERERERGphpLoIiIiIiIiIiIiIiLVUE30IDJNE4D80lKqHe7h2DHIz4fCQvCt5XbqlHt+oE6c8N++uDiw7Y8d89+u3MmTNTt+MJWU+Lfp+PHQtUWCxuVycezYMdVVtZDCQih15YN5nGOlJcQUFOhcDKL8sv/L8lgh4cETu/PzK39WFRf7x6cTJ3ROSERT7LYezyWF6xjHSkuIt5W6v+/HxIS6aRFBsTs8nTZ2izQyit3W45sOPEYx+aWlgef05IzqM3Ybpr4RBM3XX3/NeeedF+pmiIhIGNuzZw/t27cPdTOkjGK3iIiciWJ3eFHsFhGRM6mP2K2e6EF01llnAfDtt9+SlJQU4tbUv969e4fNoC713ZZg7r+u+6rN9jXZJtB1z7Refn4+rVu35rvvviMxMTHgtlpZuJwTDdEOnRM1Xy8vL482bdp4YoWEB8Xu0FHsDt42it21Fy7nhGJ3cLdR7I5sit2ho9gdvG0Uu2svXM4Jxe7gbmOF2K0kehCVPzqTlJTUKD687HZ72LzP+m5LMPdf133VZvuabBPouoGul5iYGDZ/J/UtXM6JhmiHzonar6fHLMOLYnfoKHYHbxvF7toLl3NCsTu42yh2RzbF7tBR7A7eNordtRcu54Rid3C3sULs1rcBqbWMjIxQN8GjvtsSzP3XdV+12b4m2wS6bjj9/sNFuPyfNEQ7dE4Epx0iDS2c/k4Vu4O3jT6nai9c/k8Uu4O7jc4JiSTh9Heq2B28bfQ5VXvh8n+i2B3cbaxwTqgmehDl5+eTlJREXl5eWNwVEwklnQ8i/nROhCf9XkS8dD6I+NM5EZ70exHx0vkg4q8+zwn1RA+i6OhoHnzwQaKjo0PdFJGQ0/kg4k/nRHjS70XES+eDiD+dE+FJvxcRL50PIv7q85xQT3QRERERERERERERkWqoJ7qIiIiIiIiIiIiISDWURBcRERERERERERERqYaS6CIiIiIiIiIiIiIi1XCEugGNwfbt23n88ce5+OKL2b17N3369OHmm28OdbNEQqawsJDRo0dzySWXcOTIEYqKinjuuecwDCPUTRMJmUOHDtG9e3cefvhhfvnLX4a6OY2eYreIP8VukcoUu8OLYreIP8VukcrqEruVRG8Ahw8fZsqUKaSlpVFcXExKSgpjxowhMTEx1E0TCQnTNBk2bBh33HEHAN27d+fTTz+lZ8+eIW6ZSGiYpsnvfvc7evXqFeqmSBnFbhF/it0i/hS7w49it4g/xW4Rf3WN3SrnEqCioiLuv/9+HA4H2dnZlZYvW7aMXr16cfnllzNw4EA+//xzz7K0tDTS0tI8006nE7vd3gCtFqk/dTknYmJiPIH8xIkTFBQUcM455zRU00WCri7nA8Cf/vQnxo8fT9OmTRuoxY2DYreIP8VuES/F7vCk2C3iT7FbxCvUsVtJ9ABkZ2czcOBA9u/fT2lpaaXlmzdvZsKECSxatIiNGzdy8803M3z4cI4dO1Zp3blz5zJjxgzi4+Mbouki9SJY58Tf//53rrrqKqZNm0ZKSkpDNV8kqOp6PmzatInCwkIuu+yyhm56RFPsFvGn2C3ipdgdnhS7Rfwpdot4hUPsVhI9AMePH+fVV19l8uTJVS6fNWsWI0aMoHPnzgCMHz+ekpISFixY4Lfe8uXLycvL4/bbb6/3NovUp2CdE6NHj2bt2rW8/fbbrFixot7bLVIf6no+vPXWW7hcLp588kn+97//8c9//pPFixc3WPsjlWK3iD/FbhEvxe7wpNgt4k+xW8QrHGK3kugB6NatGx06dKh2+bp16+jdu7dn2maz0bNnT9auXeuZt2TJEnbv3s2MGTP47LPP2LVrV722WaQ+1fWc+OKLL9i4cSMAhmHQvn179uzZU7+NFqkndT0fHn/8cR544AEyMzO58MIL+dnPfkZ6enq9tzvSKXaL+FPsFvFS7A5Pit0i/hS7RbzCIXZrYNE6OnLkCHl5eaSmpvrNT01NZcuWLQCsX7+eqVOncvHFF7Ny5UoOHz7MnDlz6NSpUyiaLFKvAjknHA4HzzzzDJs2baKgoIAff/yRxx57LBTNFalXgZwP5ebPn89///tf8vLyOO+88xg0aFBDNrVRUewW8afYLeKl2B2eFLtF/Cl2i3g1VOxWEr2OCgoKAIiOjvabHx0d7Vk2aNAg8vLyGrxtIqEQyDnRsWNH/vGPfzR420QaWiDnQ7lJkyYxadKkhmpao6bYLeJPsVvES7E7PCl2i/hT7BbxaqjYrXIudRQXFwdAYWGh3/zCwkLPMpHGROeEiJfOh/Ck34uIP50TIl46H8KTfi8i/nROiHg11PmgJHodNWvWjKSkJHJycvzm5+Tk0L59+xC1SiR0dE6IeOl8CE/6vYj40zkh4qXzITzp9yLiT+eEiFdDnQ9KogfB4MGD2bp1q2faNE0+/fRThg4dGsJWiYSOzgkRL50P4Um/FxF/OidEvHQ+hCf9XkT86ZwQ8WqI80FJ9CDIzMxk9erVnpG/Fy1ahN1uZ+LEiSFumUho6JwQ8dL5EJ70exHxp3NCxEvnQ3jS70XEn84JEa+GOB80sGgAioqKGDZsGLm5uQCMGzeO1q1bs3TpUgD69OnDggULSE9PJzY2FpvNxpo1a0hISAhhq0Xqj84JES+dD+FJvxcRfzonRLx0PoQn/V5E/OmcEPEKh/PBME3TDNreREREREREREREREQiiMq5iIiIiIiIiIiIiIhUQ0l0EREREREREREREZFqKIkuIiIiIiIiIiIiIlINJdFFRERERERERERERKqhJLqIiIiIiIiIiIiISDWURBcRERERERERERERqYaS6CIiIiIiIiIiIiIi1VASXURERERERERERESkGkqii4iIiIiIiIiIiIhUQ0l0EREREREREREREZFqKIkuIiIiIiIiIiIiIlINJdFFLGTz5s2kpaVhGAbnn38+aWlpfj9t27YNdRPrpPw9pKWl8d577zXIMYcMGUK/fv0wDIPs7OwGOaaIiDQeit3Bp9gtIiL1SbE7+BS7JRIYpmmaoW6EiNSMYRi88sorTJo0yW9+27ZtLR2Qyr+UPPTQQ555BQUFmKZJfHx8vR03Ozubdu3asXfvXst/IRIRkfCk2B1cit0iIlLfFLuDS7FbrE490UUiyMsvvxzqJgTVqlWr6NGjB7Nnzw54m4ULF9K7d28cDge//e1vOXnypGfZo48+SkxMDDfddBNHjx6tjyaLiIjUiGK3YreIiFiLYrditzROSqKLRID58+fz0EMPMXjwYAD+/ve/0717dwzDYOXKlVx11VV07NiRO+64w2+74uJi7r33Xrp3787AgQMZNmwY27dvr7SPVatW8fOf/5xWrVpx9dVXc/z4cdLT02nXrh1Dhw7l6aefpm3btpx//vnMmTOH/v37YxgGPXr04IMPPgBgwoQJJCQkcMMNNwT8vkaOHMnYsWNr9H8xYcIE/va3v+FyuRgzZgyxsbGeZdOmTSMzM5OXX36Zpk2b1mi/IiIiwaTY7aXYLSIiVqDY7aXYLY2RkugiEWj06NE888wzAOzYsYMVK1bw0Ucf8Ze//IX169d71psxYwabN29m06ZNfPDBB0ycOJHBgwdz7Ngxv31s2bKFt99+m40bNxIfH8/dd9/N7t272bFjB2vXrqW0tJR9+/aRmZnJ7bffzsaNG2nTpg3p6ekMHDgQgD/96U/07duXRYsW1ei9GIZR4/ffoUMHrrjiCl544QW/+X/729+YMGFCjfcnIiJS3xS7FbtFRMRaFLsVu6VxURJdxKKefPJJTy2zJ598str10tPTAWjRogVdunRh27ZtgLvm2bPPPssdd9xBdHQ0ADfccAMnT57kjTfe8NvH5MmTATjvvPOYO3cur7zyCrfeeqvnbvMdd9zhF3RtNhsTJ07klVde8cx77bXXanQ3vCq33XYb55xzDo899hgAS5Ys4YknnuC1115jypQp5Obmeta99dZbWbx4MXl5eZ55X3/9Ne3bt69TG0RERGpLsVuxW0RErEWxW7FbpJwj1A0QkdrJzMz0DHAyf/78agc2admyped1QkIC+fn5AOzevZvCwkKeeOIJ5syZ41knJSWlUt2yc845x/P666+/pri42C8oxsTE0KJFC79tJk+ezGOPPcYnn3xCv379WLp0Ke+8806t3ivAoUOHSElJYceOHSQmJrJp0yaeffZZPv74YwCOHDnCE088waxZswD4+c9/TtOmTVm4cCF33HEHmzZtol+/frU+voiISF0pdit2i4iItSh2K3aLlFMSXSQCVBwt3Jfdbve8NgwD0zT9lj/11FMMGjTotPv33Uf59md63Ktdu3akpaXxyiuv4HQ66dixI02aNDntNtX5+uuvGTZsGM899xyJiYmA+254kyZNWL58OQDR0dGcffbZfm2+5ZZbmDt3LnfccQerVq3iwQcfrNXxRUREgk2xW7FbRESsRbFbsVsaN5VzEYkgr7/+esDrduzYkZiYGHbu3Ok3f86cOfzrX/+qdrsOHToQFRXFnj17PPNOnTrFwYMHK607efJklixZQlZWlufRtNqIiorixRdf5JZbbuH48eOAO1gnJydz9dVXc/XVV/OrX/2Ke++912+7W265hV27drFs2TKSk5P9vpSIiIiEA8VuxW4REbEWxW7FbmmclEQXiSD33XdfwOvGxsZy1113MWfOHM9jZF999RXPPvssXbt2rXa7Jk2acNNNN/HCCy9w8uRJAF544QUcjsoPtowePRqADz74gMsvv7wmb8XPBRdcQJ8+fbjuuuu48847Afdo4P/+9789bXC5XLz44ot+27Vs2ZKrr76aKVOmeGrUiYiIhBPFbsVuERGxFsVuxW5pnFTORcRCPvnkE08we/TRR5k7d67f8gMHDgDwzjvvkJmZCUBaWhpvvvkmd999N9u2bSM7O5v4+HjuvfdeHnnkEUzT5JJLLiElJQWn08nf/vY3mjVrVmkft99+uyc4P/XUU0yZMoUuXbrQqVMnxowZQ4sWLYiKivJrT2xsLGPGjKFt27a1Gu37nXfeYeXKlTidTrp370779u159NFHKS4uZvbs2bz88svcfffdXHjhhRQWFnLjjTdW2kdGRgZOp5PU1NQaH19ERKSuFLsVu0VExFoUuxW7RapimBULNYmInMHRo0dJTEz0PKblcrmIj49n7dq19O/f32/dkSNH8sILL9CmTZsz7rd81POHHnqoPppdrezsbNq1a8fevXtp27Ztgx5bRESkISh2i4iIWItit0h4UTkXEamxmTNn8tprr3mm//rXv9KmTRt69+4NwBtvvMHu3bvZs2cPhmEEFMgBUlNTWb58OWlpabz33nv10vaKhgwZwvjx4zn33HOrfDROREQkEih2i4iIWItit0h40V+uiNTY0KFDeeSRR3jllVcoKSkhOTnZ8/gXwMGDB7niiito3rw5L730UsD7XbJkSX01uVrr1q1r8GOKiIg0NMVuERERa1HsFgkvKuciIiIiIiIiIiIiIlINlXMREREREREREREREamGkugiIiIiIiIiIiIiItVQEl1EREREREREREREpBpKoouIiIiIiIiIiIiIVENJdBERERERERERERGRaiiJLiIiIiIiIiIiIiJSDSXRRURERERERERERESqoSS6iIiIiIiIiIiIiEg1lEQXEREREREREREREamGkugiIiIiIiIiIiIiItVQEl1EREREREREREREpBr/HwSARVwhBMd9AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Spectral comparison plots\n", "fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n", "fig.suptitle(\n", " r\"TARDIS HE vs Summa et al. 2013 $\\gamma$-ray Flux Comparison\", fontsize=14\n", ")\n", "\n", "target_labels = [f\"{t.value:.0f} days\" for t in target_times]\n", "\n", "for i, (ax, label) in enumerate(zip(axes, target_labels)):\n", " ax.loglog(\n", " tardis_energies,\n", " tardis_target_flux[i],\n", " \"r-\",\n", " label=\"TARDIS HE\",\n", " linewidth=2,\n", " alpha=0.8,\n", " )\n", " ax.loglog(\n", " summa2013_energies.to(u.keV),\n", " summa2013_target_flux[i],\n", " \"b--\",\n", " label=\"Summa et al. 2013\",\n", " linewidth=2,\n", " alpha=0.8,\n", " )\n", "\n", " ax.set_title(\n", " f\"{label} (TARDIS: {tardis_target_times[i]:.1f}, Summa2013: {summa2013_target_times[i]:.1f})\"\n", " )\n", " ax.set_xlabel(f\"Energy [{tardis_energies.unit:latex_inline}]\")\n", " ax.set_ylabel(f\"Flux [{tardis_target_flux[i].unit:latex_inline}]\")\n", " ax.legend()\n", " ax.grid(True, alpha=0.3)\n", " ax.set_xlim(100, 10000)\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 53, "id": "a95e7b54", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/var/folders/fg/nwmb1mss6kq3hwhj10dt0qh00000gn/T/ipykernel_99945/3145511594.py:124: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", " plt.tight_layout()\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/oAAANjCAYAAAAaj2EqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd0FFUfxvHvpieEhAAJvYPSmzQBBSyoICiIFAEBRVAp0lRAQJryKlWKIEVEkKaAoKL0Iiq99957DQmQkGTeP4Ys2WTTNwkJz+ecPUlm7szc2b0z2d/cZjEMw0BEREREREREMgSntM6AiIiIiIiIiDiOAn0RERERERGRDESBvoiIiIiIiEgGokBfREREREREJANRoC8iIiIiIiKSgSjQFxEREREREclAFOiLiIiIiIiIZCAK9EVEREREREQyEAX6IiIiIiIiIhmIAn0RERERERGRDESBvoiIiIiIiEgGokBfRCSd27BhAxaLxfpq27ZtWmdJRESS6YcffrC5tw8cODCts+QQ//77L08++SQWi4WTJ0+mdXZEMiwF+iKSqmrXrm3zxSX6y9nZGX9/f1599VVWrlyZ1tmNVWznkdAg+4svviBr1qysXr062XmpWrUqFy5cYMyYMUnex6+//srAgQPZuXNnsvKyZcsWPvzwQ0qVKkWWLFlwc3MjZ86c1KlThz59+rBmzRrCw8OTdYyMKL7rIrZXXOXtwIEDWCwW3NzcuHz5crKOH991Wb58ebvbOTk5kSVLFooWLUrTpk2ZMmUKd+7cSXQ+7J3n1atXGTBgAJUqVcLX1xc3Nzdy5cpFxYoVad26Nd999x0HDx6M87wfNRnxnDISR90nE6pZs2ZcuHCBnj17Onzfp0+fZsiQIdSoUQM/Pz9cXV3JkSMH9erV45dffol3+z///JMXXngBPz8/vL29qVSpEpMmTcIwjFi3uXv3Lr169eLZZ5/l8OHDCcrnxYsXmTZtGo0bN6ZAgQK4u7vj6enJE088QceOHRO8H5HHkiEikoquXbtmXLhwwXj66acNwOjZs6dx4cIF48KFC8b58+eNrVu3GoMGDTLc3d0NwBg/fnxaZ9mu2M7j5s2bCdq+ZMmSBmB06tTJYXmaPn26ARht2rRJ9LZt2rQxAGP69OlJOnZwcLDRqlUrAzBef/11Y8mSJcaRI0eMQ4cOGcuXLzc++OADw8PDwwCMgIAAY/fu3Uk6TkZVq1Yto2nTptZrIfLVtGlTA7C77umnn47zs+7Zs6cBGIAxfPjwOI+f3Ovy6tWrdrc/d+6csXfvXmPu3LlGs2bNDCcnJ8PPz8+YOXNmovIR/bras2ePERAQYHh7exuDBg0yNm/ebJw8edLYunWr8d133xlFixY1AKNUqVIJ+wAeARnxnDKa5N4nk+rzzz83AOPzzz93yP7Wrl1ruLi4GO7u7ka/fv2MLVu2GEeOHDF+/vlno1ixYgZgvPXWW0Z4eLjd7YcNG2YARoMGDYytW7caBw8eNHr06GEAxptvvml3u6NHjxpPPPGEUaBAAWP58uXWe9OJEyfizOtTTz1l/b+2YcMG4+TJk8aWLVuM7t27G4Dh5eVl/P333454W0QyHAX6IpImatWqFecXlyFDhhiA4enpaVy7di11M5cI8Z1HbKZPn25UrVrV2LFjh8PyklaBfkhIiFGjRo14H8zs3r3b8PHxMQBjzZo1iT5ORlarVi27n1vk52JvXWzbGIZhhIaGGgEBAYa/v78BGMWLF09wPpJzXca3/X///WfkyJHDAIyBAwcmOR+RDwLmzJljd/2FCxeMnDlzpqugOCOeU0aTUQL9RYsWGYAxduzYGOvOnTtnZM6c2QCMqVOnxli/fv16AzDKlClj3L9/32Zd69atDcAYM2ZMjO0WL15svP/++0ZgYKBhGEaiAv369evbXRf5eTz//PNx7kPkcaWm+yLySKpbty5gNvX7999/0zg3jte2bVs2btxI+fLl0zoryda3b1/++ecfGjZsSKdOnWJNV6ZMmQzTx9TRXnzxRapXr+6wbX777TeCg4P58ccfATh48CD//PNPsvOZ3OuyWrVqLFy4EGdnZwYOHMjSpUsTvY9bt27x33//AVCvXj27aXLmzEmzZs0Sve+0khHPSR5tzs7OtGnTJsby3Llz06BBAwB+/vnnGOsj7+Fdu3bFxcXFZl2PHj0As2taWFiYzbr69eszceJEMmfOnKh8fvnll4wYMcLuuqeeegog3q5JIo8rBfoi8khyc3Oz/n7v3r0Y69evX0/nzp0pV64cvr6+eHl5Ubp0aT7//PMYfYDt9fldu3atdX30fsEpOZjd2rVrE3Ss5cuXU6tWLby9vfHx8aFmzZosXLgwxuBM3bp1s7v92bNneeutt8iePTuenp5UqlTJblAVub8ZM2YA0K5dO5v9xzdQ0oULFxg/fjwAH330Ubzn36pVKwoWLIiHhwcA48ePtzneDz/8YE178uTJON8re4MQnjt3jrfffpucOXPi5OQUa5/zxHz+J0+epEOHDhQoUAA3Nzf8/f2pV68ey5Yti/d8E+qzzz6jQ4cODttm2rRptGjRgpdffplSpUpZlyVXfNdlQlSvXp0mTZoA0Lt370Rvb0TpA3z+/PlY0/Xv358FCxYkaJ/JKSOHDh2ibdu2FC1aFE9PT/Lnz0/dunUZP348Fy9eTNFzcvT1c+bMGZo2bYqfnx/ZsmWjUaNGHDt2DDCDqbfffpvs2bPj7e3NSy+9xIEDB1J8n5ESc89PqIRe28m9T6bkOSRF/fr1uX79Oj4+PnbX582bF4AbN27YLL9y5Yr1unj++edjbFe+fHmyZs3KlStXYow/4+zsnKS81q1bl+LFi9tdt3HjRsB86CkidqR1kwIReTzF1zR33Lhx1qZ9e/fujbHe3d3dKFy4sPHLL78Yx44dM/bs2WN88803hq+vr/HUU08ZwcHB1rQXLlwwunTpYgBGq1atjAsXLhghISHW9deuXTNWr15tAMY///yT4H72CTmP6EJCQowLFy4YY8aMibVJ9vTp0w2LxWIULFjQWLJkiXHy5Elj1apVRsWKFa3Hi+yzHdkMMnI7wKhfv75Rs2ZN4/fffzeOHz9uLFiwwPD39zecnZ2NLVu22Bzrzp07Nn3Bx4wZY9MPPCwsLM7zmTRpkgEYbm5uRmhoaILeg6iCg4Ntjh+1SWxYWFic71VoaKjN+vr16xsVKlQwZs2aZZw4ccJYvHix4eHhYXTs2NH6+bdu3TpRn//ff/9t+Pr6Gv7+/sasWbOMw4cPGytWrDCqVatmAMawYcMSfc6JEVfT/dicO3fOcHZ2NjZv3mwYhmF88803BmBkypTJprzYk9zrMqHXQ2TTYcA4ePBgoveTJ08eAzBq1aplXLx4Mc5jJUTUe0RiysiOHTsMLy8vo3LlysaKFSus/YfffffdRH9uSTknR18/zz33nLFixQrj6NGjxrhx4wwXFxcjX758xuXLl41GjRoZK1asMI4cOWKMHj3acHZ2NvLkyWMEBQWl6D4jJeaenxCJubaTe59M7jk4uul+fCKb4Ldv395m+dKlSw3AcHd3j3XbyC4oQ4cOjfMYkdd/fE33owsNDTUOHTpkdOvWzQCMxo0bG3fu3EnUPkQeFwr0RSTBLl++bPTt29d46aWXjC5duhiXL1+OkWbRokUJ2ldsX+Rv3bplzJ492/Dz87MO7GZPkSJFjE2bNsVY/uOPP9odfOzAgQMGYGTJksXul4KPPvrIqF69eoLynpDziE9s/enPnDljeHl5GU5OTjEGrLt06ZLh6ekZ5wOCyC9P//zzj8268ePHG4Dx7rvv2s1PUvuetm3b1gCMEiVKJGq7xBw/vrEHop730qVLbda1atXK+Oqrr4z9+/dbP/+7d+/G2Ee3bt1ifP43btyw9iffuHGjzbq7d+8auXLlMpycnKwBdaQ5c+YYPj4+RuPGjY2IiIgEnH3skhLof/HFF0aFChVsziOy3EyePDnObZN7XSb0ejh9+rT1M5sxY0ai9zNlyhTr9p6enkbLli2NX375xbh161acx41LUspI5OcT/QGaYRjG888/n6jPLTnn5KjrJ/p5RA6wWaZMmRjrmjdvbgDGrFmzUmWfib3nxyWp13Zy++gn9RxSM9C/f/++kTNnTgMwtm/fbrMu8kFf/vz5Y92+cePGBmC0a9cuzuMkJdBv3ry5YbFYDMAoUqSI8euvvyZ4W5HHkZrui0iCHDhwgPLly/Pll1+ybNkyxo0bR+3atQkKCrKmOX36NH///Xei9vvll1/i7e2Nt7c3mTJlwtfXl7feegtfX18GDBjA3Llz7W539OhRqlSpEmP5008/DcAff/xhs7x48eLUqFGDmzdvxuh3eO/ePWbOnMl7772XqLynhGnTpnHnzh1q1qxJmTJlbNYFBARYmzzH5cknn4zRd7ty5coADp8W6tKlSwBkyZLFoftNikKFCvHKK6/YLJs5cyaffPIJJUqUoFq1aty8eTPG1FEhISF2P/9p06Zx6dIlatSoQdWqVW3WeXh40LZtWyIiIvj2229t1s2aNYvAwEAWLlzItWvXHHiG8TMMg+nTp9s06c+SJQtvvvkmkPDm+0m9LhPK39/f+ntkGUqM9u3bM2nSJLJly8bdu3f56aefaNKkCdmyZaNWrVp8++233L59O1H7TEoZuXr1KmB2lYlu8ODBtG7dOk3PKTFKlChBpUqVbJZF/h0WFhZjXeT9d8eOHamyz8Te8+OS1Gs7uRx5Dinl+++/5+LFi3Tt2pUKFSrYrAsMDATAy8sr1u09PT0Bc9wJRxs9ejT79+9n2bJlVK9enddff53mzZunyLFEMgIF+iISr5CQEBo1akSzZs04cuQIwcHB/P3337i6utrM3T5mzJg4B2Oz5/3332fnzp3s3LmT1atX8+677+Ll5UWrVq0YMGAA7u7udre7desWAwcOpEqVKgQEBJA5c2a8vb0pV64cAOfOnYuxTfv27QGYOnWqzfKff/6Z8PBwmjZtmqi8p4T169cDxPgCHCm2vopRFS1aNMayrFmzAjH7XGYk8b037777LgBTpkyxWf7LL78QFhYW4/Nfvnw5gN0v5gCFCxcGiDHI3YcffkjhwoXp0KED2bNnT/gJOMC6deu4cOECLVu2tFkeGfhv2rSJffv2xbufpF6XCWVE6ZNusViStI+OHTty5swZa0CcJUsWwsLCWL9+PZ06daJo0aKJHuwvsWUksp9yq1at+Oyzz2zmuK9evbrdfsypfU4JVaRIkRjLIvtw21vn6+sLxH1PceQ+k3LPj01Sr+3kcuQ5pIRjx47x8ccfU6NGDb7++usk7SPy2k7qdR2XnDlzUrx4cerWrcuPP/5Ijx49mDdvHi+99BIREREOP55IeqdAX0Ti9cMPP9ChQwdGjRpF0aJF8fLyombNmixbtsz6pfP69etcv36dwoULU7x48RivyAHbosuaNStFixalaNGiVK1alalTp/LCCy8wdOhQ+vXrZ3ebS5cu8dRTTzFo0CBKlizJvHnz2L59Ozt37rTmJzQ0NMZ2TZs2xcfHh7///tvmC/nkyZNp2bJlnLUUqSXyi15sAWLOnDnj3Ue2bNliLIscHTk8PDwZuYs9Pzdv3nTofpMiai2xPc2aNSNTpkysX7+eI0eOWJdPmTLF7ud/+vRpACZMmGCt3Y766tKlCxDzy3m9evU4duwY3333nSNOK1G+//57WrRoEWNk6xo1aiRqUL6kXJeJceXKFevvAQEBSd6Pp6cnb731Fj///DNXr15l3bp1dOrUCS8vLy5fvkzTpk2tn2NCJLaMdOnShV69enH//n2+/PJLSpQoQYkSJRg4cKDdWv60OKeEinwYGFVksGZvnZOT+RUyrnuKo/aZ1Ht+bJJ6bSeHo8/B0S5cuEDdunUpUqQIf/zxh92HeZEPaeIaODBykM7YBvpzpIEDB+Lm5samTZtS7AGYSHqmQF9E4uXh4UHXrl1jLM+RIwdPP/00hw8fZurUqdZaw0OHDsV4RTZxTYivv/4aJycnRo4caXc04yFDhnDs2DFeeuklfvjhB+rUqUOxYsUoWrQoBQoUiHW/Xl5eNG/eHHhYq3/gwAE2bNjwSDTbjyq22pCE1JKkRE1KbCKbnB47dizGdEqOErX2Ny7xnXfmzJmtTdgjP//Dhw+zbt26OD//rl27Wmu3o7727NnDkSNH2L17dwLPJGXdunWLX375hZkzZ9oNXg4dOgSY3RmSElDEd10mxtatW62/R5ah5HJ2dubZZ59l/Pjx7N27Fz8/P4KDg5kzZ06C95HYMuLi4sLw4cM5e/Ys33zzDTVq1ODQoUMMGjSIJ598MtldHBxxTo64fpJ6T3HUPpN6z49Pal7bKXUOjnD+/Hmef/55cuTIwerVq60tK6KLbIURV3ebCxcu2KRNSZkzZ6ZgwYIA1ukpReQhBfoiEq82bdrEmC830jPPPGOtlYjsF26YA33avBIzf/qTTz5Jo0aNuH//PsOGDYuxft26dcDDOb0TI7L5/owZMwgNDWXy5MlUqlQpReezNwyDe/fuJahpYZ48eYDY5wVOyT66SdGwYUM8PT0JDQ1N0PgMR44c4YcffogxB3vk1Ev2agej1v4mV2TT7BkzZhAWFsaUKVNi/fyjfvmOrN2290qNL7QJMWfOHAoXLszevXvtBi9btmzB1dWVq1evsnjx4kTvP77rMrF5BShXrhzFihVL9PZfffUVW7ZsiXV9oUKFrA/1Tpw4kah9J6aMRPL396dr165s2LCBEydO0LZtW+7cuUP79u0T3NolOeeUWtdPWknOPd+etLi2HX0OjnLq1CmeffZZcuTIwfLly+Mcb6VSpUo4OTkREhIS63V1+PBh4OG4MMlx/vx5Jk2aFGerkUyZMgFp2xpC5FGlQF9EkqVw4cLMmTOHatWqOXS/kfNr//DDD5w5c8ZmXVz/9ONralm5cmXKli3L1atXmTdvHj/++GOK1+afOnUKT09Pa//7uNSqVQuAbdu22V2/Z88eh+YtUmST2aiuX78eb5/+HDly0L17dwC++eabeI/TpUsX2rVrF+NBRlx9cyPn3HaEmjVr8uSTT3Lp0iUWLFjAjBkzYp2L/qWXXgJg8+bNdtcbhkGdOnXo0aOHw/KXHNOmTaNly5axBi3ly5e3nlNCB+WLLq7rMqE2bNjAokWLADO4TYqJEyfGO3CZh4cHkPiuAYkpI8OHD48xX3iBAgX4/vvvKVasGMHBwdbAJz7JOafUun7SSnLu+fYk9dpO6n0SHH8OjnD06FGeffZZ69gP3t7e1nW7d+/m5Zdftknv7+9P7dq1AVi1alWM/e3cuZNr166RPXt2nnvuuWTn7/Dhw3zwwQexluH79+9br6+kPDAUyegU6ItIsnh7e7N06VKaNWvm0P1WqlSJ559/ntDQ0Bi1h5EDKNnrkxd9RH17Imv1u3TpQkhICC1atHBAjh3j3XffJVOmTGzYsIG9e/farLt27RoLFixIkeNG1uIEBwdbl9WpU4eOHTvGu+2gQYN48cUXWbx4MRMmTIg13YQJE1i2bBmvvPIKr7/+us26yNrSqE26I/Mzf/78hJ1EArVr1w6ATp06cffuXWstaXTvvPMOOXPm5O+//7YbEMyaNYu1a9fGGHBt6dKlFClShA8//NCh+Y7Lnj172LZtW7xlOXIU+BUrViSpn3dc12VC/Pfff7zxxhuEh4czdOhQa8CVFDNmzIh1tO2goCAWLVqExWKJUdYSIqFl5I8//mD69Ol2192/fx+LxULevHkTfNyknlNqXj9pIbn3/OiSem0n5z7p6HOING3aNAoVKsQXX3yRqO3279/Ps88+S4UKFViyZIl1tPxI169fZ9myZTG2i2ydN3bs2BjdtUaNGgVAv379Ym0FmBSTJk2yu3zEiBEEBweTOXPmJF3nIhmdAn0RSZbQ0FCee+45cuTIkaD0169f5+LFi9ZmdkFBQVy8eJHr16/HSBtZe/j999+zd+9e63Z9+vTBx8eHVatW8d5777Fjxw727dtH//79raNlh4eHc/HiRbtfmlu1aoWHhwe3bt2iefPmMQYuS4gTJ06wd+9e6xe+y5cvs3fvXruvqDV6oaGhNvm6e/cuFy9etE5TmCdPHiZOnIhhGDRo0IDffvuN06dPs3btWurXr0/9+vVj5CX6uUbu8+7du4DZdDey+W5s70tkS4KFCxdy9OhR5s2bx549e6hTp06874WLiwuLFy+mbdu2dO7cmcaNG/P7779z7NgxDh8+zNKlS2nSpAldunShXr16zJs3L8Y+GjVqRK5cuViwYAGjR4/myJEjbN68mSZNmtC4cWO771Vs533x4sU48xvZFeXatWtxfv6+vr4sXLgQX19fXn31Vb7//nuOHz/O3r17+fLLL+nQoQNdunSJ8Zl8++23HD9+nIkTJyZqbIqoIq+TyM8w8tyif26R78HEiROpUKECHh4e1m2iu3XrFlWqVMHLy4uIiAgmTpxovaaSe11eunTJ7vbnz59n//79zJ8/n+bNm1OzZk3Cw8OZPXs2n332WaznHX0/0c/bYrFw8uRJqlWrxvTp09m/fz9nz55l+/bt1u44J0+eZODAgVSsWDExbz2Q8DICZlDYs2dPtm7dyunTp9m4cSMtW7bk5MmTdOnShdy5cyfomMk5J0deP3fv3n2k1gHJvudHl9RrOzn3yaScQ/TPLPJ6iHqNjx49mpMnT/K///0v3jxE2rt3L7Vq1eLChQucPHmS6tWrU6lSJZtXbA8vnnnmGb788kv27NlD48aN2b59O4cPH6Znz57MnDnTeq+358qVKzHu0faWRYp8WDBmzBjatm3LunXrOHHiBBs2bKBTp0589tlneHh4MGPGjGQN6imSYRkiIsmwdOlSY/z48QlOX6tWLQOI8apVq5bd9JUqVbJJt2LFCsMwDGPfvn1G48aNjaxZsxouLi5G7ty5jdatWxsrV660Sd+mTRu7+23RooUBGJs2bUrsKcd5HnG91qxZY6xZs8buus8//9xm/ytWrDCeffZZw8vLy8icObNRu3ZtY82aNcb06dMNwGjXrp017YkTJ+zuc/r06YZhGEaBAgVirLP3vgwcONDImzev4erqauTPn9/o3bu3ERYWlqj3ZfPmzcZ7771nFCtWzPDy8jLc3NyM/PnzG02aNDF+++23OLfdv3+/Ua9ePcPb29vIlCmTUatWLePvv/+2nnPk67PPPovzvBPyr61hw4YJ/vxPnz5tfPDBB0bBggUNNzc3I2fOnEadOnWMX375xYiIiIiRfs6cOYaPj4/RuHFju+sTIrbyFf1zs/ceRH7u0bVp0ybWcpnc67JUqVJ2t7dYLIaPj49RuHBh48033zSmTJliBAcHJ/u8L1++bMyaNcto3bq1UaFCBSN37tyGq6ur4eXlZTzxxBPG22+/bWzYsCER73hMCSkjJ0+eNP73v/8ZNWvWNPLmzWu4u7sbefLkMZ5//vlYy0dskntOjrp+pk+f/kiti5Tce749ib22DSN598nEnkP0z87e+zJixAjD29vb6N69e4LPe/To0Qn+vxWbP/74w3juuecMX19fw8vLy6hYsaLx7bffxlnm7f0viu9Y27ZtM3r16mVUqVLF8PPzM5ydnQ0vLy+jVKlSRteuXY0jR44k+LxFHjcWw0jgcKwiInZ06tSJpk2bWms60ovevXvz559/smvXrrTOSqKMHz+eLl260K1bN0aPHp3W2RERERGRR5Ca7otIsixfvpxy5cqldTYSJTw8nFmzZj1yU+pFmj17Nvv377e7LnJ52bJlUzNLIiIiIpKOKNAXkSQ7efIkHh4ecU7H8yg4ffo0I0aMsP79+++/c/PmTVq1apWGuYrd5MmTbfIbKXKedB8fHxo1apQGORMRERGR9MBxQ2KKyGNnw4YNPPPMM2mdjXidP3+evn37Uq5cOXLkyEHv3r3p3LnzI/2AYvr06eTIkYPmzZvj5+fH/v376d+/Pzdu3GD27NmPdN5FREREJG2pj76IJNno0aOpVKnSIx/sHzp0iNdee42TJ0/i5eXFG2+8wYQJE3Bzc0vrrNm1detWZs+ezdq1azl37hw3btwgW7ZsPPPMM3zyySdUqlQprbMoIiIiIo8wBfoiIiIiIiIiGYj66IuIiIiIiIhkIOqjnwQRERGcP3+ezJkzY7FY0jo7IiIiIiIiksEZhsHt27fJnTs3Tk5x19kr0E+C8+fPky9fvrTOhoiIiIiIiDxmzpw5Q968eeNMo0A/CTJnzgyYb7CPj0+KHSciIoIrV67g7+8f7xMbkbSgMirpgcqppAcqp/KoUxmV9CCjl9PAwEDy5ctnjUfjokA/CSKb6/v4+KR4oH/v3j18fHwyZEGV9E9lVNIDlVNJD1RO5VGnMirpweNSThPSfTzjnr2IiIiIiIjIY0iBvoiIiIiIiEgGoqb7aSgoKIhLly5x//59u+sjIiK4du0a169fz9BNTyT9UhmV9EDlVNIDlVNJSy4uLgQEBKRol1QRSV0K9NPAzp07mTZtGv9u3MT9sDCMONKGh4fj7OycankTSSyVUUkPVE4lPVA5lbRiAZydnanyVEXatGlD9erV0zpLIpJMCvRT2datW+nUpSs+OXJTv00H8hUphqubWyypDcLCwnBxccG8BYs8alRGJT1QOZX0QOVU0s790FAunDnFfyv/ovNH3Rg1/Gtq166d1tkSkWSwGIYRV4Wy2BEYGIivry+3bt1KdBOnJm++yT0XD7oM+iqOAD+Swf2wMFz1T18eWSqjkh6onEp6oHIqaS88PJzJwwZy8/Rxlv31p003koiICC5fvkxAQIC6l8gjK6OX08TEoRnv7B9hJ06c4PDRY7zw+psJCPJFRERERFKPs7MzdRs34+KVK+zatSutsyMiyaBAPxUdP36cCAOKlCyT1lkREREREYmhUPGSGFg4ceJEWmdFRJJBgX4qCgkJwcDAzd09rbMiIiIiIhKDk5MTbu7u3Lt3L62zIiLJoMH4HgFv1axIzrz5rH+fPnaEoMBASlZ4igjDwMliYf+Obfx16CxH9u3m45Zv8L8f5lG8fMU0yW//91pz7MA+Lp07Q7mq1WncrgM1X6qf4O0vnj3Nsl/m8sY7HfH28U3BnCbPgu8nUaRkGcpXq2GzfEjn9oSHhzFw4g9pkq+dG/9haJf3yF+kmHXZrk3/kiNPPms5Cgq8RZGSpfl0xHhrmrmTxjHlq8FM+XMdhYuXtNnnvu1bmPb1UPbv2Ia3j49134E3bxAREUGjNu1p0LKtNf2ovj3Zvelfzhw/SvFyFXFzdyc0JATDMKhS+3katWmPb9Zs1vRLZk1n+YJ5HNi5jXyFi1K2anV6fDnSmte5k8ay/Z/1eHh6YRgGd4KDeLJMeRq0akuxUmXjfU82LF/K+IF9qFD9GZtzjsvimd/z91+/YxgG4WFhBN68QfUXXqJNt09jdK3ZtHYlv0ydiGEYXL9yGVdXV1p27sGzrzRI0LEcISjwFu1ffhYnJ2dmb9hus+5+aCi/fD+JDX/9gYurK8G3A3m2XkNaduqe7kbwPrhrBz9NGM2t61dxcXEl5N493D09Kf1UFVp37ZUhuj3dvnWT3+f8yMZVy3FxdeVucBC+WbPxdtePKVHhKZu0wbdv892wgRzavQNXVzd8smal84AvyF2gUIz9xncdrP5tESsXzeducDAAt25cp1zV6rz7cT+8EzDezKWzZ/jm80/ZtHoFq05cSdC5HtixjcUzv+fsyeO4ubtz++ZNcubLz7u9+lLwieLWdI9SGf6m/ycsmTWdkXN+jXH/37nxH2aOHUF4WBhBgYHkKViID/oNJmfe/Kmax+SIfj/O6h9gs/76lcvUadCINt0+SaMcJsyovj3Zun4NgM090d7/6LvBQYzq25Mzx4/i7uFBeFg4I2Yv5Oi+PXw7pD9u7u7cCbpNzZfq8/ZHHzs0n/dDQ5kx5iu2rFuNh5cXTk7OfNBvCE+UKRfvtmeOH2PC4L4E3brF/dAQSlasTIfeA/DM5A1AeFgYqxYvYMWinzGMCEJD7hEeFk6jtu/xwutNrPux970BzP/xZ08cZ8nuo7i5ezj0vEUk7SnQf0SMmrvY+vtXvTqza+O/jJr7q3Vgnrdqml/+vDJ5k7dQETJnyZJGOYUhU2YyY8zX/PjNcJt8J9TFs2f48ZvhvNSk+SMe6E/mpSbNY3zRy5kv7b/QVa71nM0X+ecL+fNSk+bWL2Y7N/7Dsl/m2GyzbMFcLBYLS+fNovPnX9qsK1WxMqPmLuatmhUpV626zb5/njqRMf0+xss7M8+/9gYAPb4cyV+/zGH4x13pPWYi+QoWAixcOneWCYM/4526z/DF1FnWh1ENW7WjSu3nafnMUzT/oCsvN2lh3X//91rj5OzMyDm/4umVCYCzJ47Ro/lrFCj2RJyB/r27d/iy2wd4eHpyP/R+ot7DH0Z/xacjxlHtuboAnD99ko7162AYBu99OsCabuWvv/DThNEMn7WA7DlyEhERwRddO3Bo945kBfpBgbdY8P13CX7gNXbAp9y7exevB1/wovpfz04c3LmdcQuXktU/B9evXKbrG/UICrzFh/2GJDmPqe30sSN0a9qAD/sPoWGrdgAYhsGSWdMZO+BTmnbolCEC/Y2rV7Bg2iQmLFpGjrz5MAyDCYP60r15Q8Yv+ouiUbp3De70Dk7Oznz763KcXVz48Zvh9HyrEVP+XG8NzhN6Hfw8ZQIvNWnB62+/C8Ct69f4oOGLBN68Qf9xU+LM8++zf+T3OTPIGpAjUee6bukSwsLu883833B2cSE8LIxBnd7lk9ZNmPvfbutASSlZhv/6ZQ458+aPcS+3Z+vfa1n7h/3/a5vWrOCzd1vy2djvqPNqIwzDYOyAT+nR/HWm/rUeL++Y1+ajKK77MZjv16WzZ9IodwnX48uRzBjzNct+mWuz3N7/6IXTJ7Nv2xZmrtuCs7MzcyZ+A8DXH3ehzquNaNezD7euX2PV4gUOz+e4z3tzaPcOxvz8O55emVi2YC69Wjbmuz9WkytfgVi3u3XjOj1bvMZrb79Ly07dCQ8Lo0+7Fnzx0fsMnToLMB/KfP1xF774fjZVa78AmNfc4E7vEnw7kNdav2PdX/TvDQDfDu1P0ZJlFOSLZFBquv8IeOOdDglOk6dgYcYv+os8BQundLYkFu99OsAmEExtOfPmo0bdeolKs2fLRnLkyUuZytVY+esvhIaEJPh4rzRtCcA/y5fGmzZHnrx8/u335C1UiH7vtSL49u0409+8dpXdm//jmZdftQb5AHkLFeGNd97HyztznNuH3LvHa63foe+YSbh7JO6LyqCJ061BPkDu/AXJXaAQZ44fsy67eyeYcZ/35r1P+pM9R07AbNL4/meDeSnal+PECgq8xY/fDCco8Fa8adctXULgjes8/XzdGOsunTvL2t9/5ZWmb5HV3wzCsvoHUL9Fa36dMZXrVy4nK5+p6b+Vy7gfGsKLjZtal1ksFl5r/Q7Fy1XEYskY/7J8/Pxo8u4H5HjQAsdisfBWp+7cDw1l1eKF1nQ7/v2brX+vpVWXnji7mM/lm3XsTODNGyz+cao1XUKvg84Dh/Fqi7etf/tmzUax0mU5e/xovHnOki0bY39ZypNlyifqXOs3b82H/Yda8+/s4kL5ajW4dvkSd4KCgJQvw8t/mcuujf/Emy4o8BbjB/ah/Sf97K6fP+VbcuUvQJ1XGwHm59a6a08unTvD73N+TFYeHyVP1axtUxuc3tj7H33u1Aly5s1nbR3S4oOP8PD04tzJE+QqUBAwr4fG7eL/PpYY504eZ+m8WTTr2MX6P+6lN5rj45eV2RPGxLntwumTuXsnmDfbfwiY106rzt35b9Uy9m7dBICLqyu16jW0BvkAteo1JH+RYjYPQJ4sW553en1ms//QkHssXzCPBq3aOuBMReRRpBr9R8Ab77yfoDR7tmxk+shh7Nr0Lx8PH8vLTVqwbukSfp7yLQd2buPj4WPZ9vdazhw/isVi4eOvx3I3OIgF33/H8YP7KfjEk3wyfLxNrcOBHduYOnwo9+7cwcXVBb/s/nTsOyjOp8z2nDt5nJG9u7N/xzbeeKcDoSEhHDuwj8vnz/H8a2/QrkdvANb8vog535pP0od26YCbuztFSpam04AvALOJ9KxxozAMA4vFQr7CRejQ+3OyZMtuPdYfc2Yy97uxZPb1wydLFp5r+AZf9epMkRKlqNesFX7+Adb35NMR49myfjWXz59l37YtDJz0AyUrPMXUr4dy8vBBPDy9uHsnmJp169H8g49wdnYmKDCQAR1ac/3KZZZF+YLYb9xkvh8xjO3/rAdsmwqeOX6MycMGcvHsGZycncjsm4X3Ph3Ak2XLAzDi027W7dp/2p/Vixdw7uRx/HPl4ZMR46xBZELkzJs/3mai0dP8Of8nXnnzLe7du8vXvbqwYflSnmvQKEHHCw8zawgtloRN9+Ts7Eyzjl3p/14rli+YS6O278Wa1svbGycnJ7auX0ODlm1tmug269g53mP5+mXlqZq1EpSv6MpWrW793TAM1i9dwsUzp/kgSu3hptUrCL4dSMWaz9ps658rd4z9rVg4n4U/TMbN3Z3w8AhKVniKdj16W5tYJtX1K5eYNnwoI+cs5vsRX8Rcf/kSQIya1uw5cxMeFsauTf9YAxN74roH3A0O4rN3W3J0/16qv/gyufMXZP/2LRzctYMyVZ5myOQfuXLxAmP7f8LR/XvJU7AQBZ8ozq3r19i0ZiVFS5bmi2k/Jfg9iGzZsGn1Cmq/+rrNugm/LrP+/mW399n+z3ryFylmbVX09cdd2Lx2lc2yqNdd2569Wff7Yk4ePkiF6s/w0ZCvWTh9Mlv/XsuFM6d4s/0H1tqv5NxXr1+5FOf9BaBq7RdsvpgDuHt4AuDs8vAa2LRmJc4uLhQvW8EmXdGSpflv9Qpadu4BJPw6KFWxss3fOzf+w54tG63337gkpntWVPmKFLX5+/zpk/z182xea/2OtUVCYsrwmWNH+W7YQK5dvoiHpxdu7u6813uATSuIpBo74FMat+sQ64P065cvWR9ERMrqnwNnFxe2/7OOpu99GOu+7wQFMeWrwezduhlvHx/CwsJo8u771KrXEIDvR3zJ+j9/48zxo4yYvZAF077jwplTnDx8kMW7jpIpsw8/jR/F0nk/kS1HTnz9slLpmdqMG9iHEuWf4s33PrTuKzl6NH+NT0aMI0/BwjbfOT7oN4RTRw5x7tQJ9m7dRMc+n1O/xdtMHjaIAzu34ZnJm3t3gilduZp534vy4Pb6lctMHjaII/t24+uXlXt37/BUzdo069glQV1GIgXfvs24z3uzc+MG8hQsTMFiT+Lu6WWTJuo1H/k/uu+7b3F4905CQ0Lo0fw13Dw8aNmpO9NHDgNg7sSxLP9lLjVeqscb7Tom9y20sWXdagzDiHHtlaxQiY2rl8e57ea1KylWupzNuE7Fyz+Fk5MTG1cvp3Slqvhl96f/+KkxtnXz8LA+XAPw9Mpk85kArPtjCTly54mRNxHJODJG9chjokzlajGayteq15B+4yYDsH7pEj4ZPo5Jv60iR568/K/Hh+zbvpUBE6Yx6fdVHNi5nUUzHjbPPHHoAD3fasQrTVsy4ddlfPPzH+QtXJRuTRtwNzgoUXnLU7Awo+YuJqt/AKsWL+CNdzoyas6v9Bs7mVnjRlqfPtd5tREfPvhS2W/cZEbNXWz9krn177UM6PA27T/+jPEL/2TM/N8IDwund9tmREREAGbTyVF9e9B10Fd8u3g5gyfPZM3viwD4cMAXvN6mvc178tfPs+k2dATf/PzHg0DShXMnT3Di0AHGzP+NUXMXM3zWAlYuXsCCaZMA8PbxsZ7LS02aM2ru4gd/56DXV2N4qUlzm3O/dvki3Zq+Sq4CBZny51q++3011Z6rS4/mr3HyyCEA63Y3r10l8Po1hk6dxZQ/13Hz2hVmjP7KZn/DP+lKh3q1CQ1xzCA4d4KC2PnfP1R/8RVq1WuIl7c3f877KUHbhoeHM/vbb3B1c6PBg6bUCVGqYiUA9m7bHGc6N3cPGrRsy3+rltH2+WrMGPM1B3ftsH7eqWHsgE9pUrkkU74awufffm/TvPfo/j34+GVl9+b/6N2mKV2b1KN3m6asXrLQZh9L583imwGf0Gf0RL75+Q9Gzl7I8YP7+bJ77F/8E2pE7+606fYp/jlz2V2fp1BhLBYLF8+ctll++fxZAC6dPRvrvuO7B3hm8mbU3MUULVmaf1f8RflqNfjfjPl8Me0na83xoA/acSc4iBmrNzLip4XUePEV1v/5G0VLlmbU3MWJetDxbL0G+OfKzdCuHejTrjlL583iysULMdL1HTOJyrWes1n2yfBxMZZFve7u3b3DF9NmMW7hn6xespD+HVpTpfbzDJ/1Cx/2G8KEwZ9x6Zz5XiXnvhrf/SU2uzb9i5OTEy+89rAm9eyJY2TJlt3mCztA9hy5OHfyeALeUft+Gj+K5tXLMaTze3QZNMzaJSclbVy9nHfq1uSdF2tStc6LdB44zLouoWX4+pVLdGvWgOLlKjBxyUpGz1vCMy83oFvTBly5cD5Z+Vu3dAk3r12zdhmxJ2+hIlw+fxbDMKzLrl66SHhYmLXs2GMYBp+9+xaXzp3h28XLGT1vCd2GDmdY9w/Z8KCl1Du9+tL8g64AbFy1nCFTZjLlz3UUKVEKsLBk1nR+mjCGIVNmMm7BUnqPmsBfD7pn9Rs32SFBfnRRv3MsnTeLtj0+ZdScX2nXsw8urm7cvnmT/1Yt4+uZvzBqzq+Mmf8bxw/sY8r/Blv3EXLvLj1bvM69u3eY/McaRs1dTO9R37JoxhQunj2VqPyM7N2Nw3t3MeXPdYycvYgGLdvG6KJm73/0l9NmU7nWc9Z70v9+mGdzbs0/6MqouYtjDfKvXb5Iq1qV+fGb4YnKL5jXMEC2aA/zs+fMxfUrl62tWmLbNnolgJu7Oz5+2Th7Ivbr/9aN65w6coi6UVpG2fP7nBk0aJnw/+sikv4o0M9Aatd/3dp/tfzTz3DswD7rP38PTy9KlH+KQ7t3WtPPnTSOrP4BNk303mjXkasXL7B6yaIk56NC9WestcnFy1UgU2YfDu3ZGfdGwMyxIyhdqSrlHgRazs7ONGrTniN7d1uf0M+ZOJYnypSzfqF3c3eP8wn8C43eJFNms/n3R0O+5unn61K0VBmGTJll7ZPm7eNL9RdeYsPyP5J0vktmTifwxnVad+lpXdaoTXvcPDyYO3GsTdrw8DDqP2g66+LqSrlqNTgc7b25d/cud+8E23yZTI41vy2i5kv1cHVzw8PTi1r1XmPHv+u5ePa03fRb1q2mR/PX6NzoZRqULsTxg/uYsnRdgvq3Roqsmb1982a8absO/oreIyeQJZs/M8eOoNPrdWn5TEVmfzuG8LCwBB8zqboO/opftuzn/X6D6f9ea/6YO9O6LvDGDYICb/HT+NH0/eY7xv6ylKYdOvNVr87MnzzBmm7m2BHW5pJg1rq+2uJt/l3xp/WLXlL8MWcmbm7ucQZiPln8qN/ibZbOm8Wpo4cB8wti5MOc8PDY38PE3AMKPVnC2gqi1FNV6Dd2Mjv+/ZsDO7fR5N0PrLVOFao/wxOJbN4dKbNvFr77Yw1NO3Tm2P69jOzdnRbVy9G9WUN2JqDpdWwiIsJ5sZH5pTerfwAFn3iS+6GhFHqyxIM81yQ8LIyj+/bE2Dax99Wk3F/C7t9n+shhtOrS02aAunt37+DmFnOWFlc3d+uAeknRsnMP5v67i88nTGXsgN7MGPN1kveVUNWeq8v3yzfww6p/2bZhLZ++3dR6fSe0DC/+8XvuBAXRrGMX637rt2iNEWGO45BUZiuMIXz89Tdxpmv+fheuXrzAgu+/wzAM7oeGMuV/g3F1c4vzXrXj37/Zvfk/mnfsYi1LRUqUokL1msyfHHPQxNdat8NiseDk5MTkpWvx9vFh7qSxVK3zwoPA3yxXr7Zok+RzjjR34lh6NH/N+jq6f6/ddM+8VJ9sAWbQ2eL9rrzW+h38svszet4SMvtmAcwHt7XqNbQ+vABYtXgBp48doXWU7if5ixTj7Y8+IbOvX4Lzef7UCdYtXULDlm2txyv4RHEq1ng27g0dICI8grvBwUl6+H737h0sFgsurq42yyPLwb27sV/H9+7csTsmiZu7G/fuxL7d9JHDKPVUFet3DXtOHj7IiUMHef71lH/IJyJpR033M5DsUWr8PLy8YizzzJTJptbh8N5d3L51kx7NX7PZT448+bh5/WqS8xGQK4/N35ky+xAcGBjvdkf27iZT5sw2+QkPDyNHnnzWpp0nDx+k0rN1bLaLa3A8e03cXV3dWPPbIv5b+Rfh4eE4Oztz8eyZBDdNj+7w3l34Zs1m/fIBZl+63PkLxnjA4Zfd3+Yfd6bMPgRFe2/iGxQrsf6c/xM9ho2y/v1K07f4c/5P/Dl/trVLRVRRB+z5d8VfDOj4NpvWrozRBDcugTdvACR40MgXGzflxcZNuX7lEv+tWs5fP89h2vAvuHz+HN2GJr4WJbEsFgs169bjxcZN+XZIP55r0AjPTN44OTsTHhZG6y498clifimtWONZnnn5VX6aMJqmHTpx4+oVLp8/x87//rEpu6EhIeTIk48rF86Tt1ARju7fw7eD+9msh4ddWCI1/6ArVWo9z4Uzp5g3eRzjFvwZb/67Dv6K/EWL8U3/TwgPu09W/xy8328wn3dsg69ftli3S8w9wN61dOLQAQDyRmvqnCtffq7aqYlPCF+/rHToPYD3Pu3PkX27+fvP31k6bxYft2zMmJ9/T1Iz0yzZstt80fbw9CJ7jqj3RrPVQdDtmOMlJPa+mtj7i2EYfP1xV54oWy7GaN+eXpkIDY05nsb90BA8M2WKsTyxylatTtMOnfh++Be82OhNuyP5O1rOvPnpMvB/dG78MisWzeflN98CElaGD+/dBcCnb79ps8+sAQE2Y10M6fIeN6L06z+6fy8Xz56x6acftcvYiN7defujT+x2yYmq1FNV+OaXP5g7aRxrf/8Vd09PXni9CRfPniIiIvYHs4f3mPme/NUQ3KLc/2/duB4jAATIEe1aC75929oNLipHDAwbfTC+6PeCh3nKF2OZi6srO/79m9VLFhEachdnZxeuX7nMtUsXrWmO7N0NxOzCEVc3B3tOHjZbx0XvVpEzb372bduSqH0lln+u3CzYuj/ONNevXGJol4f9+yPLl6dXJgzDIOz+fZvP+n5oKECM5vRReWbKZE0XVWhIKB6xbPf77B85sHMbI2cvsg50ac9vP/1A3cZN4zy+iKR/CvQzECc7UxDFmJYoWi1xnoKFkjRyfmLyYbFYElw7XbpSVT7/9vs40ySmptveezLlqyH8PmcGY3/+gyIlSwPYHbk3MWL7Eh99uZNT0t+bpDh5+CCnjx1m/MA+Nss9PL1Y9ssc2nT7JM4vA9VffJk6DRrxw+j/8WLjpvj6ZU3QcfdtN794lX6qSrxpr1w4b/2CndU/B/Wbt6Z+89b0adecNb8tSpFAPyIigojw8Bhfsgs9WYJ7d+5w9uRxipUqS448eQEz8I0qd/6CBAXe4sbVh1OMPftKAzr2HRjrMYuWLGNzrV08e5qWzzxFv3GT7QbR/61chpu7B4M+fDhqcuTUm5FfxiP35+zszBvtOtq0bomsAS9aKu6+ywm9Bzg5x15ODBxThu8GBxEeHo63jy8Wi4UnSpfjidLlaNiqHS2ffYp1fyy2Bvr2rrnwsHD7eXeKeR+wdz72rsXE3lcTc3+JiIhgZO9ueHh50W3o8BjnlKdgYTatXUl4WJhN8/2rly6Qt1CRGPuLS2SwEb2GsPCTJYiIiOD4wf0pEuiHhoTYPMgCKFTcbEkRtfY4oWXYM1OmeMtr9IelPZq/RrlqNexOF3f10kVOHT7En/Nm8ec8cyTzyIcG3w7+DG8fX+vDNzD7Vg/+bobNPmaOHUnVOrZjLtjT63+jbVpsxCZ6+YosFyn5vyJSbO+tvetg0Q9TmDD4M/73wzzrA/jI2VhSiqPuNY6W1T+H3fcu8iHotUsXbR6WXL14gWwBOeLs2pSnYGGuRnloAub1FHjjGnkLx7z+l86bxV+/zGHETwvjnMnl3t07rPz1F775JWmtGEUk/VDT/cfYk2XKc/7UyRhPjGeNG8nuTf+m2HGdon2ZDb59G8MweKJMOWuzzajGD+rL6WNHADMQi943NXq/zvhs27COwsVLWb+Eg1lDFiOfUQLg0JB7sY5U/0SZ8ty8dpXbt25al4WHhXH+9MkEzZObkpbOm8WH/YdaxxmIfLXr2YcrF86zZf3qePfRumsvQu7ejbePcaTw8HDmThqHX3b/BI1M/3adqoSHxwzQ8hUuiiWOhxDJsXvzf/Tv0DrG8shaaB/fyNp7c4CzKxdt+/9eu3wRdw9PvH188cvuT0DuvJw6esgmTXh4OMO6f8itG9eTlMfG7Tow9a/1Np9b5VrPkdU/wPp3pEO7d1pbUUTa8c968hUuah0Q0p7k3gMKFS8JEKO/6IVEXpOR1v35G5OHDYqx3D9XbrwyeduMup8psw/BQbazOkT26U5LCb2/hIeFMaz7B3h5Z6bHlyNxcnIiKPAWSx8EmwBV67xAeFgYB3fvsC4LuXeXo/v3Ui0BgWVUl86doUP9OjGWX71oBhJRWyQ5Utvnn7Z5IGYe88F1luVh0+2ElOEnypQn8Mb1GPv7ffaPrP/ztyTlL3uOnPz09zab6yxyHJkPB3zBqLmLrUH+jatXOLrftnvH+VMnuHTuDC80ejPGviNF5v/UEdt7xN6tm/hx7Ih48+jl7U1A7rzJ/t/naNs2rCOrf4BNK7vo95LI/4FRZzMBc7rX4wfjriWPquCT5gOSc9HuNbF1QXtUVKn9PBaLxfrwO9L+HVupWufFeLZ9gSN7d9l89zi4cxsRERFUi7btrzOmsnzBPL6aMd96Lc+f8q3d/a75bRFFSpamYLEnk3BGIpKeKNB/jDV/vwv3Q0OZO2mcddmujf+wdN5PFH7QDzAlRI6sfOv6dUJDQmhRozz37t7h7Y8+5syxI6xYON+advWShez8b4O1uV7zD7pyZO9utqwzA9TQkBB+mz0j5kHiULh4SU4dOWidJ/hOUBD/rYo5+m3WgABuXb8GwPhBn/HXz7Pt7u+11u/g45eNmeNGWpctmjGV0Hv3aP5+4ms2vv64C+1frpXswfjuh4by74q/qFU/ZlPMFxs3xdXN3VqDFZf8RYpR+9XX+fXHqfFOBXfp3FkGvt+WC6dPMXTKrATNKx0aco8fvxluE+yfOXaUtX8sjncwoYT6YfRXtHzmKa5fuWRdtuPfv22a8p48fJDfZs+g2nN1rTUvT5YtT/UXXmb+5PHWL1unjx1h3dIlNG73nrV2tE23j9myfo1NP/L5k8cTePN6gltBJMf8KROYE2U8iKP79/D7nJl0+2JEnF1SknsPqPB0TUqUf4pfpk20vj87/v2bE4difoH/4qOOdKhXO959rvl9kU2fd8MwWDzze+4EB/Fcw8bW5U+WrcCpI4etn+nBndutXQnSUkLuL/dDQxncuT3BtwN54fU3ObR7J4d272T35o2sXPSzNV2F6s/wVM3azBo30np9zPtuPD5Z/Hjt7faJztvpo4dtBpK8fP4c8yaPo2jJ0pSuVDUpp2vj2P69vFmlFH/Otx3sc+bYEdY+7CH37jLlqyF4eXvbTKOYkDL8Wut38M2ane9HfGkdsPPkkUP8NGE0RaM8WEkpR/btZtCH71inDb139w7jBvahfou34+xSUv7pmpSrVoO5342z3kODb99m4tAB5LNTM2tPiw+6snH1So4d2AdAUGAgyxfGbCWydf0ani/kH+OBREooXLwkN65esXZNuB8ayvqltg9cnmvYmPxFijF7wmhrGT66fw/Thn9BtgffBWIrN1Hlzl+Q2vVf47fZM6wP1U8ePsimNSscek7XLl/krZoVbQbes7csoXIXKES9Zq2Y99047j7oV79swVwCb1zjrU7drOnsvQeN23XAw9OLn6eaAXt4WBizxo/m6edfsrle5303nl++/453evbh7Ilj1vvJL1PtB/q/z/6Rhi3bJvpcRCT9sRip0RYsgwkMDMTX15dbt27hk4ipYZYuXcrHfT9j1Pw/7A6wEnjzBgPfb2ttnluywlO06dmbcpWrARabqW7yFS5K7Vdfp3Slqvww6n8c2LmNIiVK8fZHH3P9ymUWTp/MmeNHKVe1Oh8PH8uciWP5d8WfhIaE8ESZcoz4yfyyd2j3TqZ+PYRrly+R1T8AD08vOvT53DqomD3932vNsQP7uHTuDOWqVqdxuw6UrlSVwZ3eZf+ObWT1D6BW/ddo2ak7Azq0tlnWsc/nAHzT/xN2/rcBz0ze1HypHm992A0wv6TM+GY4IXfv4O2bhWwBOejYd5DNyLN/zJ3JnIlj8fXLil92f+q+0YxBH77DNz//TulKVdn691qb96Rw8VL0HvVw4LRb168xbmAf9m7dRIGiT+Dt40tERAT/rVpOyQpPMXDSD/hk8WPzulWMH9iXbAE5cHF14/Nvv2fSFwPY/s96rl+5TMkKT/Hx8LHkyleAsyeO8d2XA7lw5jTOLs5k9s1C+0/6U7ycOS3WxKED+Puv363bDZz0A/Mnj2f1kkU2y3yy+DG0awcO7d7B1L/WW6fcis2qxQv4Y86P7Nr0Lzny5KNIiVIMmTKTk0cO8VXPTpw7eYJyVaszZMpMm+16NH+Nw3t3cT80lFIVK9O2R29+GPU/9u/YhrePD/mLFKPn/0ZbH7CcOnqY9i89Q/6iT1DpmTrcvRPM7k3/cub4UYqXq4ibuzuhISEYRgSVaz1PozbtbaZEXDJrOssXzOPAzm3kK1yUslWr0+NL88HIgunfsW3DOm5cuYynVybu3gkmPCyMOg0b0/S9TjGbSUcz4tNunD91wibvz77SgNfbPAyEpnw1mL9+nsuk31fhnzMXt2/dZNEPU/hv1TJc3dywWJy4dyeYZ19pwBvvvo9HlCmb7t4JZtrXQ9m58V+8fXy4HxrKK01bUq95K5tWH6sWL2D+5PE4OTvj5u5BoSdL8N6nA6yDQUYX2XT/p7+3xTtd4oZlf7Bw+mSbe0PZqtVp2/1TABbP/J5ff5yGq6sr3r5ZcPfwoHXXXpSsUCnO/UL894BeLRtzeM8u3NzdyV+kGF2HfG1TExR1er28hYpQonxFLp49w42rVxg+6xdrug71alOyYuU4u2JcOHOK336awa6N/1i7VQQF3iJ7jpy89WE360CdYH7pHft5b3b8u56ceQtQ6qnKXDhzin9X/EXRkqUZ9sNcvh8xzHrdFS9fka9mzGVol47s2vQvbu7uVH/xFVp80JXhH3e13ldfadqSIiVLJ/m+mpD7y5rfFjF2wKd234NyVavbtNYIvn2b7778nEO7d+Di6oZv1qx0GvBFjL7K8V0HoSH3+HXGNP5e9geGYeDs7Mzd4CCeeqYOLT7oalO7bs+6pUtY/OM0Lp49Y733e2TKxJfTHj4APbxnF71aNqb9J/2so9ev+X0RKxbO5/qD6/tO0G3yFSlG6669KFD0Ceu2CS3DZ08cY/L/BnP66GGy5ciJs7MLbXt8GmdZj6vpflQh9+7Sp21zggJvcezAPoqUKIW3jy/DfpiLu4cnJ48cYmz/T7hy8Tz+OXMTHh7GMy83oHG7DnF2gQKzW8rUr4ey9e+1+GX3xzAiqN/8beq+0Qwwg7U/5/9kLV9Pv/Ayb7b/wLq9YRjMnjCa3+fMxD9XLrIF5KRyrecY2bs7c//bbZ2VY8H3k5g5diTzNu6O9f9H9PtxVv8Am/t9pOMH9zN+YB/rtRGQOy9fz3z4ICo05B7fDunPxtXLyV2gEJl9s+CTxY+l82ZRrmp1673i+pXLfPflQI7u34OvX1acXVx479MB1tp+e+XGnqjT6+UuUIhc+QuQyTszS2aZ0+b2/N9o5kwcG+N/9LiBfazT6xUtWZq6TZqTp0Ahm+9TWf0D6DduMuFh4bzf4AVeadqC9p/0B8zuZdGXJcb90FB+GP0/tqxbjYeXF87OLrz/2WCb1laxvQdnjh1lwuC+BAUGEhpyj1JPVaFD7wHWJv8njxzi3bo1Yz32qhO2rV+O7t9Dn7bNmfPPTrvjQ0TVq3lDenXtzFtvvWVdFhERweXLlwkICIi3zIuklYxeThMThyrQT4KUCvRjMrgfFoariwuQtIHiMprQkBBCQ+7Z9D/bs2Uj3Zo24OfN+8jqH5CGuXscqYw+7q5fuRzjuvu41RvkKVjYGtSvWDif74YNZMKvy63jHqQulVNJD2Ivp3fvBINh2PTpXrHoZ0b37ckf+09hsVi4dvkinV5/iZade9DgreSPyC+PNwX6yRAYCFu3ws6dYLFApUpQtSok6Lu/JFdGL6eJiUM1GJ+kK4d272Dq10MYOftXXFxdCbt/nwXff0f1F15WkC+SBoZ1/4Am7T+gam2zz/jBndvZs2WTTc3X1csXGbtgaRoF+SLp34ZlS9m4ejn9xk7GYrFwNziI336aTr3mraxdG84cP0aH3p/bdHERkVQQFgb79sHGjeZr3z540L0IgJ9+Ak9PePppqF0bataERFQUOsTFizB3Lpw7By+/DM89Zz6EkAxNgX4qcnnwlD7sfmgCa/Qlupz5CpA9Z246NXqJTN6ZCbl3jxLlK9K2R5/4NxYRh6td/3VmjP6aeZPGER4ejsViYeiUmTbNUlskYawKEXmoaMnSrPtjMZ1er4u7hyehISFUrvWctdsbQPkoXVtEksM6S0c8zfvTvePHYe9eMwivWjXxwXdEBPz6K0ycCDduxJ327l1Yvdp8OTlBqVKQKxcEBJivHDnMn3nygJ9f/EH4zZtw5IjZSqBkSYjts7p9G6ZPN4P8yMEy16wxA/2+fSGB0yBL+qRAPxXlzZsXZ4v51D2tR2NPr/xz5nL4PPMiknT1W7SmfouYMxiIiOMUerIEQ6fGP3iqiCOcP3UCIzycPHnypN5Bw8Ph229h8WLInx/69IFisY8XlWQXLsDy5fDXX2agHMnJyWxiX7s21KplBt5xOXYMvvgCdu9OfB4iImDPHvNlT5YsULSo+SpWzPwZHAwHDsD+/ebP81FmA8qUCZ55xgzen37afHARGgq//AJTp5pdCaJbvdrsWjBggNnCIC3dvw/XrkH27OCSwND0+nXz/du3D95/3/z8JAb10U+CpPbRNwyDeq++il+Borz7cb84R8N+sIX6lcojTmVU0gOVU0kPVE7l0TBn4jcc+G89a1attKnVT7G+zyEhZmC/fv3DZV5eMHy4WdOeXHfvwtKl5mvXroRtU7IkVKsGZcqYr8ia75AQmDYNZswwH07Exs0Nypc3g9idOyG1wi03NzPfR4/aPgyIS6NG0L27+Z6DeV7nzpktHs6cAWdn8/x9fW1frq5w587DV3Cw+RPM9y9rPLMOXbwIP/5otooIDQV3d7OlQ9myD19ZspgPRk6eNN/H3bvN1+koU2vOnWs+DHlAffQfUqCfBEkN9AF+//13PhswgJJVa/LsKw3JX6QoLq6xNePXP3151KmMSnqgcirpgcqppJ2wsPucP3WSf1b8yfY1y/m0V09atmxpkyZFAqjAQOjRwwzionN2hn79oEGDpO973jwzELwV9/TA8cqf3wz4d+2Cs2ftpylWzAyyq1Uzg3x3d3P59euwYQOsXWv24Y9sQp/anJ3NYP7BFKE28uQxg/Pjx80g+v795B3LyQmqVDHHA6hTx2x1EOnMGfjhB/j997gflgDky2d2iwgKij1N377Q+OHYJAr0H1KgnwTJCfTBDPYnTJzIufMXiDDAIPaPICI8AifnjFdIJeNQGZX0QOVU0gOVU0k7FpwskNPfn/bvvkOzZs1ipHB4AHXlCnTubDaDj0vHjtC+fcIHj7t61RwAb8GChzXMscma1QwikxN8581rBptVqsSf9u5d2L7dfFhw6RJcvmz7Skw+3NwSnv7556FTJzPgHjoU/v474cdJLjc3s3tA7drw33+wbJntYIXJVb8+DBpk/VOB/kMK9JMguYE+mM34Dxw4wLlz57gfy1OziIgIbt26ha+vb4YsqJL+qYxKeqByKumByqmkJRcXF3LmzEnp0qVjLX+xBlAhIfDPP2a/7ytXzMD32WfNwNfT0/4BT50yg/wLF2yXOznZDwIbNoQXXjCD+CtXzJ9Xr8K9e+ao9+Hh5s+wMLPvfVw10j4+ZuD78stQoYKZ/40bzUHqNmyw36fdHmdnaNMG3n33Ye19ckREmE3mjx61fUU2ny9WzKx1L1kSSpSAwoXN1gJr15p537o15ntXrhx89JHZDD6SYZhjIYwcaT54SK88PaF0afMBQpQHUwr0H1KgnwSOCPQTIqMXVEn/VEYlPVA5lfRA5VQeWffvw717REREcOXqVfz9/XECs2Z6xQqzdthezbmbG1SubAb9mTObTcJPnzYD16NHYwaZ2bPD2LFmX/pZKTD4ZM2aZhPvatVin9M+LMw8r82bzb7g+/aZDwKiK1vW7FZQuLDj82kvT05O8Q84FxhofhYbNph5btjQHFgwtpYQZ8/C55/HPm5B1qxQsKC5/a1b5v5v3rTfisDJyWwt4OVlpr13L2Hn5uZmjhHwxhvmmAK7d5v52bs35vueK5f5vpcrZ/4sVsx8ABJNRr+XKtBPYQr0RUwqo5IeqJxKeqByKqkqMNCsDc6fP/YA8vx5GD/erDEODcUAwu7fx8XV1fGjSOTPbx4rd27z73nzYMSI5A9i5+QEL74IbdsmbRT/yBYCe/aYAWhgoLm/V1/NGCO9R0TAokVma4Ds2aFQIfPhRaFC5oB79ty7ZwbzYWFmYJ8pkzkwX+QDhbt3zQcOf/0F//5rpovOywuaNIFWrewP2hf5vh85Yu6/TBlz+sEEnVLGvpcq0E9hCvRFTCqjkh6onEp6oHIqqWLvXpgzB1auNJu7580Lb75pDngX+Z327l1zsLSZM21qb1Ms0C9ZEr75xpw/Pqq1a82+70npP+/qap5T69bmgG6SNgIDYdUqM+jfvt0sY02bQvPmsT9ISKaMfi9NTByawMkKRUREREQk3QkLM4OtOXPMQD+qs2dh9GhzDvtXXoHixeH7782B4RLDyQkqVjRHm9+50wzqEjLg2osvQv/+D6d2i6p2bZg8GYYMgRMnzAcB2bObL39/82emTObc6y4uZjNuFxdzWYUK8U/vJinPx8dsmt+okfnAxsUlY7SESCcU6IuIiIiIZDQ3b8LChfDzz+YAdnEJCTHnM08Mi8UM7l98EZ57zjawvn3bHGF93TqzybuTk9k8P39+sxVB/vxQpIjZ7zoupUubzfgNI+Gj7sujKbZxESTFKNAXEREREckojhwx547/88/kz9nu5GQ27X/rLQxnZ25cvUr2bNmwODmZA+zZq4kHc13duubLERTkiySaAn0RERERkUfRnTswfbo5dV1wsNmvOerLYjGD+dBQs1b+2jVzpPi45Mhh9pMuUcKsxV+1yuyvH13VqtCz58OR5SMiiABzUDQ1vxZ55CnQFxERERF5lBiGGYCPGmXbX/7q1aTvs1w5aNEC6tR5OC1ZlSrmPhctggULzN/z54du3eCZZ1STLpKOKdAXEREREXlUnD4NX38NGzcmf18uLmbz+RYtzBp8e7Jnh/feg3ffhRs3zL72CvBF0j0F+iIiIiIiacUw4Nw5cy7zLVvMZvr37ydvn1mzmvOUv/EGZMuWsG2cnBKeVkQeeQr0RURERERS24EDMH++GdxfvBh32qpVzX71wcHm3OSBgXDrlrnO3d0c0TzylS8fPP20RjkXecwp0BcRERERSS3h4eZc9VOmxD/XvL+/OSDe88+rOb2IJIoCfRERERERRwkNhQ0bzP7xFSuCt/fDdRcvQr9+sHNn3PtwcoK33oIOHWKfwk5EJA4K9EVEREREHOHsWfjoIzh1yvzbyckc7f7pp8HPD8aOhdu37W+bNStUqmS+atY0p7ETEUkiBfoiIiIiIsm1axf06PGw7zyYTfN37DBf9jg5Qdu28PLLUKiQmueLiMMo0BcRERERic/+/TBwINy8CeXLw6uvQvXqZhP9v/6CQYMSN1p+7twwdCiULZtCGRaRx5kCfRERERGRuFy4AJ07m6PdgzkF3urVkCWL2TR/3brE7a9uXejb17b/voiIAynQFxERERGJTWgofPrpwyA/qps37Qf5NWvCgAHmFHr//gv//QenT4OvL3TvDvXrq5m+iKQoBfoiIiIiIrEZOdJstp9QzZqZffWdnaFGDfMF5oMCDw/Nby8iqUKBvoiIiIiIPUuXwoIFtsvy5IFs2WD3btvlTk7mnPfNmtnfl49PyuQxA4qIgHv3ICjIfGXJYk5KYM/XX8PVq2YDCXd38+Xm9vD36K+o63LkgIIF7e/XMNToQtI3BfoiIiIi8ni6cweOHoUjR+DcOXMKvIIFzRHw79yBL76wTe/hAaNGQZEicOaM+SDg77/NAfnefx+qVUuT00gPli41ZxYMDn4YwEe+oi4LDjZfhvFw2+7doWVL+/tdvx4uXkxanurVg8GD7a/r2RM2brR9OBDZIMPTE7y8Yn/lzWvOqGhPRIT5TEgkpSnQFxEREZHHx+HDMHMm7NljznufGH37mkE+QL580LGj+XpM3b5tPu84e9b8+cILUKCA/bRffWUG8EkRFBT7uuSMZ+jhEfu6e/fM4RlCQxO/3+rVYw/0hw41H3rE9aAg+itLFvMZVI4cULhw4vMjjycF+iIiIiLyeFi6FIYMSdw0eJGaNDGrgB8jhgG3bplB/KlTcOCAJ7duWayB/a1btukDAmIP9L29H71AP67hEkJCkr5fL6/Y1925A2Fh5pAN9sZ3jEuRIjBvnv11//0H+/aZXRyivzw91Q3hcaRAX0REREQytogImDQJvv8+aduXLGkOsJfBRb5NkYH8mTNRg2wL9+974eoa+/ZnzsS+ztsbLl1KWr7iCrrr14cqVczf790z04aGmj8jX6GhD2vooy6Pa9iElAz0kyq2cQoANmyI/SGAu7v9BwCRr5w5zVkiJWNRoC8iIiIiGdfdu/D55+a89/Y4OZn98gsWhGvX4MQJ26rW3LnNdufpeLT8oCA4f97sy37+PJQubb6ic3KCRYvgxo2kHSeunhClSpmzC3p7274yZYr/p7Nz7Ptt1ChpeY3Pl1+a71v0hwMhIWaRunvXbKEQ+fPOnYev2Ab4g5QL9K9fj31dSAhcuGC+7ClaFObOtb/u0CE4dszsqZI/v/lwRK0D0gcF+iIiIiKSMZ04Af37w8GDMde9+Sa89prZ6TlqEG8YZqR78qQZIZUpk7z24SnMMMznEufPPwzmLlywDeyjN31/9137gT6YAV1iAn0nJ8iVy9yuePHY0w0YkPB9Pgry50+Z/Q4ebHZ5iP6gILafwcFw86YZyGfPHvt+4wr04xPXA4SVK2H69Id/Z85sftaRgX/U3/UQ4NGiQF9EREREMpYbN2DyZHNqvIgI23VOTvDpp/DGG/a3tVgetml+hA0cCPv3m0H93buJ2za2ml0wR4yPPnOgs7PZsCFbtlCefNKZ/Pkt5Mtnps2Vizib84ut3LnNl6NVrGh2Gbh+3Xxdu5bwgQTjKurRu2Pcvm2Wu/37Y6aN/hCgWDF47rmEn4M4lgJ9EREREckYQkLMjsrTptkf+S1zZrMZfmSn7kfMzZuwd68ZaB88CDVqQLNm9tOeOgXHjyftOOfPx76uZk1zhPfIgC1fPnO0d4vF4PLl2wQEeGp6uEdQ9MkfDMN8ABQZ+N+4YQb/UX9GrsubN/b9nj6d8DxEfwhQrlzsgf6RI+a4CfnymV061BLA8RToi4iIiEj6dOeOGRVv3w47d5pRcmzVmPnzw+jRsQ8Ln8rCw82+z7t3mzP97dkTM6jKkiX27XPlMrdJDH9/c7u4mtjXrWu+ooveMEIebRbLw+n54grk41OggBmQnztnltnEyJcv9nUzZsBff5m/R20J8OST5sOmQoUU/CeXAn0RERERSV8uXDBr7f/4I/6p8tzcoFUraNs27uHQU9iNGw8D+t27zVrP+JrcX7wY+7pcuWz/dnIya95z5TJHUc+d2/w98pUjR7oeT1DSyLBh5s/wcPOyi5yN4cwZ88HUmTOxPwSIa5yDqF0CorYEWLYMxo41H07UqmW+ypWLe0BGsU+BvoiIiIikD5cvm1Pk/fqrORl5fOrVg06dzCg3jUydCr//HveI9LGJq4n988+b4whGBvIBAQqGJOU4O5vBd9688PTTtutiewgQV8uRuKZiBPN6+ekn8+XjY9by16plHjsNn9elKwr0RUREROTRdv48zJplzv0WXw2+xQKVK0PnzlCyZKpk7+5d8PS0vy4wMHFBvru7ORVd6dJxB0olS6ba6YnEKa6HAPbcvWt2SwkOTlh3gMBAWLrUfLm6wjvvwHvvJTvbGZ4CfRERERF5NB0+DD/+CMuXx95J3NnZjIzLlzeHHi9b1qwCTEHXrsH69bB1q9kU390dfv7ZftrYprGLlCePmeUyZcxXsWLgom/okoF5esLChWaQf/Hiwy4AR4/Chg1mw53Y3L+fpg100hXdRkRERETk0bJvH0ycCBs3xp7Gzc2cIq9Nm7gnGHcAw4ATJ2DdOvO1d2/MNLdvm4OKRVe27MPfPTzMZxJlypjLS5d+5GfxE0kxzs7mg648eR62BDAMOHTIfJC2bp35e1QWi9mM356wMPjmGyhZ0pXnnjMfwD3OFOiLiIiIyKMhJAQmTTI75sZWg+/iAo0bm4PrBQSkWFbCw2HXLli71gw64mt+v3ev/WbLOXJA//5mM/yiRdWPXiQuFot5rRQvDh06mDX+69c/bEFTqlTsD8e2b4c5cyzcv+9DliwWatQw+/VXr27/IVxGp0BfRERERNLerl0waFDsE3d7ekKjRvDWW+aw8ingzh2zEcHatWYT4sDAhG8bW6BvscBrrzksiyKPlZw5oWlT8xUUZHabic369Q9/Dw42e/wsX24+XHvqKXj2WfOVO3fK5/tRoEBfRERERFLf7dtw/PjDyeT/+MNstxudnx80bw5vvpmife/Pnzd7AsQ31l8kLy+zprByZbMpftGiKZY1EQG8vc2XPYZhNvW3JzwcNm82XyNGmNdq5NR9xYubU1NmRAr0RURERCR13L4Nc+bAb7+Z83HFxdXVHFq7ZctU6WybKxf4+8c9pV1AwMMAoWJFzUsv8qgICzMb/KxdazYOisvRo+Zr2jTzmn/mGXjhBahSJVWymmoU6IuIiIhIygoKgtmzzVdQUPzpS5eGAQPMieIdICwMduwwa/yKFoXXX4+ZxmIxA/g5c2yXP/mkufzZZ83fLRaHZElEHChy2r22bQ3277/OwYP+bNhgYfNmCA2NfbsrV8wZAO7dU6AvIiIiIpIwoaEwaxbMnGnW5sfHzQ0++MCsxU9me9rz583BuzZuhH//ffh8oWxZ+4E+mMH8zz+b/Xkjg/sUGg5ARFJI9uwGjRtDkybmuBubNpn99//+G27etL/Ns8+mahZThQJ9EREREXG8nTth6FA4eTL2NC4uUKAAFCliVrW//HKSR8q6ft0M7Ddvhi1b4Nw5++n27DHT2hu5u2JFWLky9n7AIpK+eHlBnTrmKyLCHA5k/XqziX/kuJ8uLvYH0kzvFOiLiIiIiOMEBcG4cbBgQexpXngB3n4bnnjC/JadxMNs324G9Zs3m2P6JYRhmCPqN2wYc52zs4J8kYzKyQnKlzdfXbvCqVNmd57r1yFTprTOneMp0BcRERERx9i2Dfr1Mzu+2vP88+YAe8kcov6//+Cjj8wausQoWdJsoluhQrIOLyIZQIEC5vPGjEqBvoiIiIgk344dZjVZSEjMdSVLwmefmaPZJVBYmPnTXoX/k08mLMjPkgUqVTIH2apZ0xw1X0TkcaBAX0RERESS58ABs4o9epDv4QEffgjNm8c7uF5EhDnl1ZYt5mv7dhg2DGrUiJk2a1azW3/05vpeXmY/+ypVzAC/aNGMO0e2iEhcFOiLiIiISNKdOAFdupjDW0dVpYrZjD+ewfUCA2HxYnO0++hz2G/ebD/Qj9z96dNQrhxUrmy+SpZMcpd/EZEMRbdCEREREYnf6dPw9ddw/Lg551zhwmYn19mzY85ZVauWmdbZOdbdHToE8+fDn3/GPs/1li2xZ+fdd6FzZ3B3T/ypiIhkdAr0RURERCRumzfDp5/C7dvm35cvm/NU2VOlitnm3k6Qf/8+rFkD8+bBrl3xH/bIEbPG38cn5rosWRKefRGRx40CfRERERGJ3fz5MGJEwka/K13aTOvmZrP4yhVYtMicce/atbh3kSeP+aygcmWzn729IF9EROKmQF9ERERETHfumJNKBwaar9WrYeHChG1btCiMHWuOiBfF8uXQvz+Eh8e+qYsLvPACNG0KZcqAxZKMcxAREQX6IiIiIo+98HCzuf2SJfHX3NeubY6Ad+KE2V//8mUoVQr69LFb/V6+PBiG/V35+8Mbb0CjRpAtW7LPQkREHlCgLyIiIvK4GzcOfv01/nTt20OHDnbnrDMMsFcRHxAAderAqlUPl1WsaNbe166tUfJFRFJCuru1zp8/n6lTpxIeHk5gYCD58+dn+PDhFC5c2Jrmu+++47vvvsPT05MsWbIwefJk8uTJY11vGAZDhgzh119/xcXFhSeeeIIJEybg6+ubFqckIiIiknaWLoVZs+JO4+YGAwdC3bo2iyMiYONGc3C94sXhgw/sb96sGfzzD9SrB2++CcWKOSbrIiJiX8zHsY+4Vq1a0atXL1atWsWmTZvInDkzL7/8Mvfu3QNg4cKFfP755/z111/8888/VK1alVdffZWIKM3QRo8ezfz589mwYQObN2/Gzc2Nt99+O61OSURERCRt7N8PQ4fGXO7qaralL1QIXn4ZfvjBJsi/fducVe+NN6BrVzOIX7Ag9mnyKlQwp9Hr21dBvohIakh3gf5rr71G3Qf/aJycnOjcuTNHjhxh+/btAHzxxRe0adOGgIAAAD766CP27t3L0qVLAQgPD+d///sfnTp1wuvBYDG9evViyZIl7N27Nw3OSERERCQNXL8OvXrFjM4/+wz+/ReWLYOffzYfBDzxBIYB+/bB4MFm7D9qFJw583Czmzdh5Ur7h7JYIHPmFDsTERGJJt013f/5559t/vbw8AAgNDSUGzdusH37dvr06WNd7+vryxNPPMHKlSt59dVX2b17N1euXKFy5crWNCVKlCBTpkysXLmS0qVLp86JiIiIiKSW69fNae/27n3Qmd4CwcFw65ZtujffNEfGi+LOHfjrL7PG/tChuA/z++9m83wREUlb6S7Qj+6///4jd+7c1KhRg927dwOQM2dOmzQ5c+bk+PHjANafUdNYLBZy5MhhXRddSEgIISEh1r8DAwMBiIiIsOkS4GgREREYhpGixxBJDpVRSQ9UTiU9SNFyeu8elq5d4eDBuNNVqIDRvbt11P3Dh82Z9f76y8KdO3FvWrQovPmmwcsvxz9ov6RPupdKepDRy2lizitdB/ohISEMHz6csWPH4urqyp0H/4Xc3d1t0rm7u1vXJSRNdMOGDWPQoEExll+5csU6NkBKiIiI4NatWxiGgZOd0W1F0prKqKQHKqeSHqRYOY2IwPvLL3HfsyfOZOEBAdzq2RPj+nVWrXLjt988OHDANc5tnJ0NatQIpWHDe5QuHYbFYvbdv33bcdmXR4fupZIeZPRyejsRN9h0Heh37NiRJk2a8MYbbwBY+9xHrX2P/DtTpkzxpolcF12fPn3o0aOH9e/AwEDy5cuHv78/Pnbmi3WUiIgILBYL/v7+GbKgSvqnMirpgcqppAcpVk4nTcKycaM5uF5ssmTBeexY/J94AoDduy0cPRr7JrlyweuvGzRsCNmyuQD2vz9JxqJ7qaQHGb2cRnZbT4h0G+j37t0bFxcXvvjiC+uyyCn2Ll68aJP24sWLvPjiizHS5M2bFzCn27t06ZLNFH1Rubu7x2gBAOZggCldgCwWS6ocRySpVEYlPVA5lfTA4eX0r7/g++9tl3l7m4PtububffVdXKBMGSxRKi6aNLGd8x7AyQmeecYcZb9aNXBysjgmj5Ku6F4q6UFGLqeJOad0efZfffUVJ0+eZPLkyVgsFrZt28a2bdvw8/OjQoUKbN261Zo2MDCQw4cP88ILLwBQtmxZ/P39bdIcPHiQ4OBgaxoRERGRdCs8HJYuNYfHj8rJCb76irMlXuTbvc8SUq0W1KgB0VonVqoE+fObv/v7Q4cO5iB7I0dC9ermbkRE5NGW7mr0J02axMyZM5kyZYp1Sr3ff/+dggUL8tRTT9GvXz86depEz5498ff3Z+zYsZQuXZp6D4aAdXZ2pnfv3kyYMIG3334bLy8vRo4cSYMGDTTivoiIiKRfoaFmRD5jBpw7Z7Mq3HBi/ctfsWBmVTZuNJcVLGh/hHyLBbp0MX8+8ww4O6d81kVExLHSVaB/+/ZtOnXqREREBNWrV7dZN336dAAaN27M5cuXeemll/Dw8MDPz4/ffvvNpplD9+7dCQoKokaNGri6ulKsWDF+/PHHVD0XERERkWQxDDh1CrZvh507YeNGcxq9aEnW3K7EN649Obe0mM26X36JfSq8OnVSKM8iIpIqLIZhGGmdifQmMDAQX19fbt26leKD8V2+fJmAgIAM2cdE0j+VUUkPVE4lPUhwOb16FTZtgv/+g82bYwT2Ue2/W4jRl99ih3NlyJsHiNmvfu5cc2o8kfjoXirpQUYvp4mJQ9NVjb6IiIjIY2n7dhg1Cg4ejDfp5ft+jL/SlKUhL0D27JDZm+hBvo8PvPoqZM6cQvkVEZE0pUBfRERE5FG2bRt88AFERMSZ7E6EOzOv1efHkGaE+OWETF5ED/BLloRmzeCFF8yB90VEJGNSoC8iIiLyqLp8GXr3jjPIj/DPwR+ZmzPh8Itc9fUDt5gRfO7c0LUrPP+8OcieiIhkbAr0RURERB5FoaHwySdw44bt8kyZoEoVqFYNo0pVPhiSh23bLXa/1Xl5Qfv20Lw5uLmlTrZFRCTtKdAXEREReRSNHAl799ouq1HDXO5ifoWzANVrwLbttsmcnKBRI+jYEbJmTZ3siojIoyPjDUUoIiIikt4tWQILFtguy5MHhgyxBvmRWrQwm+ZHevppczT9Pn0U5IuIPK5Uoy8iIiLyqLh7FyZMgPnzbRaHuXkROmQkXnamU3Jzgy5dYMoU6NYNqldPpbyKiMgjS4G+iIiIyCPAZd8+LOPGwdmz1mWGAX8HVWBM9iFU+ysnn5S1v+0LL8Bzz4GzcyplVkREHmkK9EVERETS0rVrMGUKvnPn2jTLP3wvP2Mut2Cz+zMQkpOzv0DTplCwYMxdWCwK8kVE5CEF+iIiIiJpITAQZs6EOXOw3LtnVt8DQeGeTLzShJ9vvUhEQE7w8wPMGfbGjDFfIiIicVGgLyIiIpLaVq+GwYMhKMi6yDBgZWAVRl5qxVXX3FAoF7i522x2/TrcuWNOmyciIhIbBfoiIiIiqenwYejd26yif+BcqD//O9+ajfcqgL8/ZMuGOXmeKSDAHHDvpZfMqfNERETiokBfREREJDVNmWIN8u8bzsy8Vp+pV1/nnndWnIoEgKubNambG7RrB61bg4dHWmVYRETSGwX6IiIiIqnl8GFYswaA7XeeZNiFdpxwewIK5SDcyQkn14dfzapXh08/hTx50iqzIiKSXinQFxEREUktU6YQbjgx5EJ7fr9V0xwqP08esz3+/TDAbLnfq5c5XZ7FEs/+RERE7FCgLyIiIpISgoLA3R1cXc2/H9TmO1vgXsSD5vlZs4GTM2Dg5GTQrJnBhx9ayJQpzXItIiIZgAJ9EREREUcKD4exY+Hnn82h9Bs0gI4dzb75D/TMMYt/71XkTlZz6rwSJeC9925Rs2Y2DbYnIiLJpkBfRERExFFu34Y+fWDjxofLFi6EP/+Eu3eti/xdb9Kp+TUm7Hemc2do3Njg6tXwNMiwiIhkRAr0RURERBzh3Dno1g1OnADg79vlCceZ2pm32QT5APj48ObwKrwQas6kF2WmPRERkWRToC8iIiKSXHv2QPfucPMml+/7MfxSa9bcroSf820qeh3ExznYNn2rVjhlzkS2tMmtiIhkcOoFJiIiIpIcBw9C585E3LjFnOsv0eT4V6y5XQmcXbiRKS/jrzS1Te/jA82apU1eRUTksaAafREREZGkOnkSOnfm2i0XPj//MRuDS5vL3d0hXz5wdWNhyLs0KXGdJw4sBg8PGDgQDasvIiIpSYG+iIiISFJcuAAffsg/Zwsw8HwHboRnNpdn8oa8ecDJmSxZoFs3D4rV7w+BXc1A3909TbMtIiIZnwJ9ERERkcQ6f57QD7sxfs+LzL7+0sPlmTJBvrxgceL116FLF/D1fbDO+ouIiEjKUqAvIiIiklB37sAPP3By6kr6nuzA4ZD8D9d5ekLevPgHODF4MFSunHbZFBGRx5sCfREREZH4GAYsW4Yx5hsWHy3JiIsDuGe4PVz/oE/+s7WdGTAAsmRJs5yKiIgo0BcRERGJU0QEDB9O4NylfHHhHVbdjlZV7+qGW5H8dP/EhSZNwGJJm2yKiIhEUqAvIiIiEpuQEPjsM1i7ll13ykcL8i3g50fhytn4crgrRYumWS5FRERsKNAXERERAbh4Ef74A8LDIXt2yJYNZsyA3bsBeCbzTt7IspoFN58zR9bPkYMmLd3p3l0D6YuIyKNFgb6IiIg83gwDfvsNRowwB9uLQ4+889lR+A2uuuZkwAALtWunThZFREQSQ4G+iIiIPL5u3oQvv4TVq+NP6+2N+6hRDM+WC09PCAhI8dyJiIgkiQJ9EREReTzt3w89esDVq9ZFdyPcGXWpJRW8DlHP95+HaQMCYPx4KFyYAmmQVRERkcRQoC8iIiKPn8BA6N4drl2zLjp8Lz99z3XipEsRloU9R9m818kbfgrKlYP+/VWFLyIi6YYCfREREXn8fPONNciPMCzMvVGXcddacj9nPsicmTvAZ/lnMm0auOjbkoiIpDP61yUiIiKPly1bYPFiAM6HZmfQhQ5sMypCobw2Uf3x43D4MJQsmVYZFRERSRoF+iIiIvL4uHcPvvgCw4Bfb9Zm9OW3uIMXFM5jE+QXL26O0Zc/fxrmVUREJIkU6IuIiMjjY/JkLp8IZuiFXvwbXNZcljMAXF2tSVq1gk6dbBaJiIikKwr0RURE5LFg7D/An+OPM/zCMG5HeJkLPb3Azw+AnDnh88+hcuU0zKSIiIgDKNAXERGRDO/65TC+fOMYa891eLjQYoFcuQALr79uDsKfKVNa5VBERMRxFOiLiIhIhrZ5M/Rtd5mbpwvbrsienex53OnfH2rUSJu8iYiIpAQF+iIiIpKh5Qw/x90z17D52uPuzitvZeXj3uDjk2ZZExERSRFOaZ0BERERkRQTEUH+6YPonH2edZGf822+Hu7EkC+dFeSLiEiGpBp9ERERybgWL4bt22nmZ2HN7afI4hxE7063yfpup7TOmYiISIpRoC8iIiIZwvbtUKoUuLs/WHDlCnzzDQBOFoMx+UbimTsrlp7zYt+JiIhIBqCm+yIiIpKu3bkDX30FHTrAxIlRVnz9NQQFWf/0cgrB8llf8PJK/UyKiIikItXoi4iISLq1fz/0/TSMs8dCwNOTn35yolYtqHBjNaxZY5u4Xj14+um0yaiIiEgqUqAvIiIi6Y5hwM8/w6gBNwg7dwkiIsDJGSNXTgb282JuyGg8o26QJQv06JFGuRUREUldCvRFREQkXQkOhqGDI1gx+wpcv/ZwRUQ47udP0tLnL9yNi2CJstHHH5vBvoiIyGMgSYG+s7Nzsg7q7e3NrVu3krUPERERefwcPgy9e97n9KYLEBxks66s51EG5v6O/FyyDfJr1IC6dVM3oyIiImkoSYG+xWIhX758ST7ojRs3krytiIiIPH4MA5Ysga/+F0Ho4TNw757N+jbZ/uBD/59xtkTYbujlBX36gMWCiIjI4yJJgX5AQAAnTpxI8kFz586d5G1FRETk8XL3rjmq/u+/A1ev2wT5Ps7BDMw7jWffLQZLPM12/VF17gw5c6ZuhkVERNJYkqbXMwwjWQdN7vYiIiLyeDhxAtq0eRDk378PV69a15X0OMGs8iN5du6H0LMnzJkD5cs/3PiZZ6BJk1TPs4iISFpLUo1+v379knXQ5G4vIiIiGd9//8Enn5g1+gBcvgSG2TS/md8KPsoxF7fvvocSJcz1uXPD5MmwYweEhECVKuCUpDoNERGRdC1JgX6nTp2SddDkbi8iIiIZX5Ei4Ob2INAPDobAQLyc7jEg11Re8NkMb7zxMMiP5OQETz2VJvkVERF5VOgxt4iIiDySAgJg6FCwYMClixRzP8OsQv3NIN/HBz78MK2zKCIi8khKUo2+iIiISGp4uprBuwVXcfXCET7O8SPuTvfNFZ07g69v2mZORETkEZXgGv1r167x6quv4u3tTYUKFfjnn38AOHr0KF9//TUNGzZMsUyKiIhIxnX/fozZ8h6u+PxzOp7oTb9c0x4G+cWLw+uvp2YWRURE0pUE1+h36dKFIkWK8P7773Pq1Ck6derEF198Qf369Xn77bfp06dPSuZTREREMqBLl8xp7vPkgcFvH8Vy5DC4uIC7O8yfD5s2YbFE2cDJyRyhT4PsiYiIxCrBgX7u3LkZMWKE9e/33nuPPn364OvrS7FixVIkcyIiIpJxHTgAXbvCjRuwe/1NKsz+jsZ+a2LfwMkJ+vWDsmVTL5MiIiLpUIIfh+fOnRuAkJAQANzc3Bg5ciS7du1i06ZNKZM7ERERyZC2b4eOHc0gn7D7cPEiIy614tC9AvY38PCA0aNBXQVFRETileBAv1ixYowePRo/Pz927NhhXd6pUyeCg4NxUhM6ERERSYD1682x9O7cebDg0mUwIvB3uWmOsB+dnx9Mngw1aqRqPkVERNKrBDfdb9CgAadOnaJo0aKUjdZkrkWLFhQsWNDReRMREZEMZulSGDgQIiIeLLh7BwJvUdlrP1/nHUtm5zvg7w9ubuZgfEWLmn3y8+ZNy2yLiIikK4maXq9AgQIUKGC/Sd3TTz/tkAyJiIhIxjR3LkQZ7gcw4OJF6mTeyhe5v8XNKQy8vWH2bLMWX0RERJIkUYF+dNu3b6dixYqOyouIiIhkQIYBU6bA5MkGBN6Ge3cBC4SF0cB9Bf1yTcPZ8qCKv2NHBfkiIiLJlKxAf9asWQr0RUREJFYRETByJMybB1y9CleuWNe1zPoXHwXMwcnyoF9+4cLw5ptpk1EREZEMJFmBvmHYGTBHREREBAgLg8GDzX753LsHV65a133o/wvtsi3BYomyQa9e4JKsryYiIiJCMgN9i81/ZxERERFTSAj06WOOsA8GXDgPGFgw+DTnjzTxW2W7wYsvQpUqaZBTERGRjEePzUVERMThDh2Cf/998Me1a3DvHs5EMCTPROr6bIIKFcDHB0JDoXhxaN8+TfMrIiKSkSjQFxEREYcrW9Zstv/ZxyEYV67gbrnP13nHUsN7l9kXf8IEcwo9ERERcTintM6AiIiIZEx1XzToE/A9mS3BTMj/lRnkWyzQv7+CfBERkRSkGn0RERFJGX/+SeMb06hTZD5+LrfNZc2bQ5kyaZsvERGRDC5ZNfr58uVzVD5EREQknQoKsrMwOBi++QbgYZCfOzd88EHqZUxEROQxlaxAv3v37o7Kh4iIiKRD27ZBw4awbl20FVOmmIPwRdWrF3h5pVreREREHlfqoy8iIiJJsmEDdOkCgYHmVHrbtj1Ycfw4zJljm7hGDXjmmVTPo4iIyOMo1QL95s2bp9ahREREJIWtWAE9e5qz44H5s3t3OH7MgBEjIDz8YWJXVzOxxZI2mRUREXnMOHQwvsOHD7Njxw5CQkJsloeFhbFy5UpHHkpERETSyJIlMHQoRETYLq9W1SDvH9/B5s22K1q1gvz5Uy+DIiIijzmHBfrffvstXbp0wTAMu+steoovIiKS7s2da1bYR/fqK+H0vz8A5x+X2a4ICIB33kmdzImIiAjgwKb7ixYtstbmR0RE2LxCQkIoVqyYow4lIiIiaeD77+0H+U1fuc2Asx1wXrks5spevcDTM+UzJyIiIlYOq9GvVKkSZcuWtbvO1dWVLl26OOpQIiIikooMAyZMgB9+iLYiPIy2hdbTaWU/LPdDbdc5OcHHH8Nzz6VWNkVEROQBhwX6hmFgGEasTfRz5crlqEOJiIhIKomIMGvx58+PtuLWTTo5TaLd6V9ibuTlBf/7H1Svnip5FBEREVsOa7rfvn17PvnkEy5dumR3/ZAhQxx1KBEREUkF4eEweLCdID84iI/Dv6JdZjtBfs6cZht/BfkiIiJpxmE1+pkzZ+bQoUPkzp2bHDly4OHhYV13//59zp8/76hDiYiISAq7fx8++wxWr7Zd7kQ4/bxG0jDTCtsVLi7QuDF07Ai+vqmXUREREYnBYYF+27Zt8fDwoHfv3ri5udmsCw0NZezYsY46lIiIiKSwVatiBvnOzjC0+Bxe3Peb7YoXXoAuXSBPntTLoIiIiMTKYYF+kSJFGD9+fKzr//nnH0cdSkRERFLYSy/BoUMwc6b5t5sbfN16DzWnjbFNWKUKDBsGmkZXRETkkeGwPvq+8TTTW7lypaMOJSIiIinMYoGuXeGNN8zZ8b75Mpiav31qm8jLC/r3V5AvIiLyiHFYoF+6dOk4g/m6des66lAiIiKSCiwW+PRTmPVjBJWX9IfLl20TdOsGmlVHRETkkeOwpvthYWGMGzeO0aNHU758edzd3W3Wbd261VGHEhEREQcyjNgr5Z2coMCKqbB+ve2KqlWhUaOUz5yIiIgkmsMC/W7duhEWFkbWrFnZv3+/zbr79+8THBzsqEOJiIiIg5w9a46uP2gQFCxoJ8H69TB5su0yX1812RcREXmEOSzQz5cvH+vWrYu1r3758uUddSgRERFxgJMn4f334epV+PBDmDoVcueOkuD4cejXz3YjJydz8L2cOVMzqyIiIpIIDuujP3z48DgH5Pvqq68cdSgRERFJpqNHoUMHM8gHs/v9Bx/AlSsPEvz1F7RtC3fu2G740UfmSPsiIiLyyHJYjf6LL75od3lYWBguLi689NJLjjqUiIiIJMOBA9CpEwQG2i739gaXsHswZDgsXhxzw1degbfeSp1MioiISJI5rEb/2LFj1K5dmx49etgsnzFjBn379iUsLMxRhxIREZEk2r3brLmPHuSXKQOTvryOX6937Qf5pUqZnfnVL19EROSR59Cm+xaLhVOnTtksf/fdd3nvvfcYNmyYow4lIiIiSbB9u1mTHxRku7xiRZjw2Xkyf/QOHDoUc8OGDWHSJPDwSJ2MioiISLI4rOm+s7Mza9assbuuUKFC3L5921GHEhERkUTauBF69oSQENvlVarAqA+O4NGpM1y7ZrvS0xP69IF69VIvoyIiIpJsDgv079+/H+f6y5cvO+pQIiIikgh//w2ffALR/1XXrAlfdzmDW/sOEP2BfO7cMHZsLHPuiYiIyKPMYU33r1y5wo4dO+yuW7t2LRcvXnTUoURERCSBVq+GXr1iBvnPPQfDv4rA7cuBMYP8J56A779XkC8iIpJOOaxGv2/fvtSpU4dXX32VihUrkjt3bm7cuMGaNWv4448/WLFihaMOJSIiIgnw118wYABERNguf+klGDwYnGf/BLt22a6sWBFGjTKH4BcREZF0yWGBfuXKlfn111957733mD17NhaLBcMwyJ07NwsWLKB69eqOOpSIiIjE499/oX9/MIzIJQYEBdGw7Cn6vRmB03FPmDjRdqM8eWDMGPDySuXcioiIiCM5LNAHqF27NkeOHGHjxo2cOnWKXLlyUaNGDZydnR15GBEREYlHpUpQuTJs3vxgwdWrNAmbyyfHfsSpvRFzA4sFBg5UkC8iIpIBODTQj1StWjWqVauWErsWERGRBHBzg5EjoWtX2LE1jLcsc+ie40csllg2aNECKlRI1TyKiIhIynDYYHypKTQ0lD59+uDi4sLJkydt1rVt25Zq1apRu3Zt66tjx442aQzDYPDgwVSsWJEqVarQqlUrbt26lYpnICIikvI8Pc2W+H0qr6J71jiC/AIFoFOn1MyaiIiIpKAUqdFPSSdPnqRFixY88cQThIeH200zd+5cCsYxUvDo0aOZP38+mzdvxsvLi3feeYe3336bxYsXp1CuRURE0kYmyx3eOPoVxBbke3mZI/O5u6dqvkRERCTlpLtAPygoiJkzZ3L27Fl+/PHHRG8fHh7O//73PwYNGoTXg36IvXr1olSpUuzdu5fSpUs7OssiIiIpxjBg9mxo2BAyZ7aTYNEiCAy0XTZ5Mly9ai6vUgXy50+VvIqIiEjqcFjT/alTpzpqV3EqXbo0RYsWTfL2u3fv5sqVK1SuXNm6rESJEmTKlImVK1c6IosiIiKpIiIChgyB0aPho4/g7t1oCUJDYdYs22W1a5tT6NWtC02aKMgXERHJgBJco3/27Fkiok/EG8WaNWto3769QzKVXMOGDePQoUOEhYVRrlw5BgwYQI4cOQA4fvw4ADlz5rSmt1gs5MiRw7ouupCQEEJCQqx/Bz6oGYmIiIjzPUmuiIgIDMNI0WOIJIfKqKQHGbWc3r8PAwZYWLXK/Hv3bujZE0aNMnBze5Bo6VIsV67YbGe0bm0+IZBHSkYtp5JxqIxKepDRy2lizivBgX6PHj1YsGABhmFnSh7MYPmnn35K8IFTyhNPPEGBAgWYOHEiYWFhfPjhh1SrVo09e/bg7e3NnTt3AHCP1hfR3d3dui66YcOGMWjQoBjLr1y5wr179xx/Eg9ERERw69YtDMPAySldjpsoGZzKqKQHGbGc3rsHQ4dmZssWN5vl//1nsHZtIOXLh0FICFkmTcL5/n3r+vtlyxKYIwdcvpzaWZZ4ZMRyKhmLyqikBxm9nN6+fTvBaRMc6P/www+UKlWKzz//3O76To/IaL19+/a1/u7m5saoUaPw8/Njzpw5vPfee9Z++VFr6CP/9opl7uA+ffrQo0cP69+BgYHky5cPf39/fHx8UuAsTBEREVgsFvz9/TNkQZX0T2VU0oOMVk6Dg6F/fws7d4Kr68Plrq7w5ZcGtWplNReMG4fl6lWbRM7vv49HQEDqZlgSJKOVU8l4VEYlPcjo5dTDwyPBaRMc6Ht5eVG4cOFY19euXTvBB01NPj4++Pv7c+zYMQDrOVy8eJG8efMC5nR7ly5divX83N3dY7QAAHByckrxAmSxWFLlOCJJpTIq6UFGKac3b0LXrrB/v+1yT08YORKqVHkwtP6+fRC9lV3ZsliqVyf2OfYkrWWUcioZl8qopAcZuZwm5pwSdfatW7eOdd2bb76ZmF2lmI8++sjm75CQEK5du0a+fPkAKFu2LP7+/mzdutWa5uDBgwQHB/PCCy+kal5FREQS6soV6NAhZpCfOTNMmGAOng+YA/ANGmTbD9/VFfr3V5AvIiLymMhwjzkmTZpkE8QPHToUX19f64MIZ2dnevfuzYQJE6x98keOHEmDBg00tZ6IiDySzp+H9u0h+pixWbPCd99B2bJRFk6eHDNhhw5QqFCK51NEREQeDQluum/P9u3bqVixoqPykiChoaHUrVuXmzdvAtC8eXPy5cvHzz//DMCIESPo3r07Li4u3Llzh+zZs7NmzRoCovRJ7N69O0FBQdSoUQNXV1eKFSvGjz/+mKrnISIikhDHj0OnTmaNflQ5csDEiVFmxwsLM9vvP/h/aFW8OMTRIk9EREQyHosR2zD6CdCjRw9GjRrlyPykC4GBgfj6+nLr1q0UH4zv8uXLBAQEZMg+JpL+qYxKepCey+mBA9C5M9y6Zbs8f3749luwzhR78yZ8+ils22ab0NkZZs6EJ55IjexKMqTnciqPB5VRSQ8yejlNTByarBr9ZDwjEBERkTjs2WMG+cHBtsuLFTP75Gd9MLg+R49Cjx5m+/7oPvpIQb6IiMhjKFmPOSwa1EdERCRF5MoFfn62y8qUMfvkW4P8tWuhXbuYQb6bGwwdCm+9lRpZFRERkUdMxmvPICIikgFkz242z48cYqZKFbMm39pSb/p06NUL7t613TAgAKZOhZdfTtX8ioiIyKNDgb6IiMgjKnduM9hv2BDGjAEvrwcr/vzTjPqjK1MGfvwRSpZMzWyKiIjIIyZZffRFREQkZRUsCAMGRFlw7hwMGxYzYYMG0KeP2WxfREREHmsK9EVERNLYuXOQJ08CEoaFwWefwZ07tsu7djWn0NPYOSIiIkIym+7ny5fPUfkQERF5LO3YAW++CePGQbyT2UyeDHv32i5r0ADefltBvoiIiFglq0a/e/fujsqHiIjIY+fwYejWDUJDYcYMuH0beveGGFP/3rsHY8fC/Pm2y/Pnh48/Tq3sioiISDqhwfhERETSwOnT0LkzBAc/XLZwISxaFC3hgQPQqlXMIN/FBb74IsoIfSIiIiIm9dEXERFJZZcvQ6dOcP267fJateD116Ms+Pdfcwq90NCYO+naFUqUSMlsioiISDrlsBr9r7/+msGDBzNu3DgAtmzZQokSJciaNSvNmjXj5s2bjjqUiIhIunXzphnkX7hgu7xSJXMwfWfnBwv++89+kO/ubo6u36JFamRXRERE0iGHBfqnTp3iySef5N133+XWrVvUrVuXokWLcvToUT766CMGDRrkqEOJiIikS3fumBXxJ07YLi9ZEkaNijIz3saN0LNnzCC/ZEmYPRveeEOD74mIiEisHBboBwQE0KxZM7y8vJg7dy6BgYF88803ZM2alerVq+Pp6emoQ4mIiKQ7oaHQowfs32+7vGBBc5w9a1f748fNhNGD/Hr14PvvoUCB1MiuiIiIpGMO66Pv6+tr/f2///4jZ86cFC5c+OGBXDQcgIiIPJ7Cw6FvX9i61XZ5zpwwYQJkyRJl4XffxQzyX3kFBg60Mxy/iIiISEwO+8Zw48YNAIKDg1myZAn16tWzWRcSEuKoQ4mIiKQbEREwdCisXWu73M8Pvv0WcuSIsvDMGVi92jZh3boK8kVERCRRHPatoUKFCrzwwgtUr14dFxcX+vTpw4ULFxgzZgzly5e3qfEXERF5HBgGjBkDv/1muzxTJhg3DvLnj7bBTz+ZG0Xy8jKbAlhH6BMRERGJn8Pa07/++usUL16c3bt388wzz5ArVy727NmDn58fgwcPVtN9ERF57Eyfbo6dF5WbG4weDcWLR0t8/TosWWK77I03wNs7RfMoIiIiGY9Do+/ixYtTPMo3lzJlylCmTBlHHkJERCTdKFwYXF3h/n3zbycn+OorqFjxQYLDh2HDBrOT/pEjtn3znZ01hZ6IiIgkiarZRUREUkjt2vDNN9Crlzm13qBB8MwzD1Zu2GBOoRcebn/jV16BgIDUyqqIiIhkIA4L9Hft2kWmTJkoWrRonOlu3LiBn5+fow4rIiLySKtSBSZNgkOHzNgdMKfQ69s39iAfoHXrVMmfiIiIZDwOG4yvbdu2/Pnnn7Gu37ZtG/nz5yd79uw8//zz3I9sxygiIpLBlSwJjRo9+OPWLeje3azij0316lCkSKrkTURERDIehwX6devWpU2bNkybNo0pU6YQFBRks759+/a88sorXLt2jVq1ajFx4kRHHVpERCTNhYUlIFFEBHz6KZw7Z7vcy+vh797e0K2bI7MmIiIijxmHNd0vXLgwRYoU4dq1awAMHz6cTZs24efnx40bN9i1axezZ88mS5Ys9O3bl3bt2jnq0CIiImnq8mV4/33o3Bmeey6OhMuWwdattstKloQpU+DmTfMBQNGi4OOTktkVERGRDM5hNfrr169n/vz53Llzhxs3btCjRw/GjBkDwLlz57BYLBQsWBAAFxcXAjTAkIiIZACBgWaAf/q0WVm/cGEcif/6y/Zvf38YORLc3SFHDnM4fgX5IiIikkwOC/Tz5s1LnTp18PDwwNfXl/fff5+7d+8CcP36dQA8PT2t6Z2dnR11aBERkTRx757Z3f74cfNvw4Avv4TFi+0kDgqCTZtsl3XpYgb7IiIiIg7ksED/6tWrNn9fuXKFkJAQACIiImKkj96HX0REJD0JDzcHzt+1y3Z5/vzw7LN2Nli/3rYjv6sr1KqVonkUERGRx5PDAv2nnnqKokWL0qJFCxo3bkzx4sUpVaoUQUFBzJo1CxcXF9auXQvAli1bMAzDUYcWERFJVYYBX3xhxu5R+fvD+PFgdxbZ1att/65aFTJlSrE8ioiIyOPLYYPxffjhhwB89913+Pn5MXnyZMLCwujTpw9FixZl3759vPzyy5QtW5Zt27axOvoXHhERkXTi229hyRLbZd7eMG4c5M5tZ4M7d+Dff22XPf98iuVPREREHm8OC/TBDPYjA/5IzZo1s/6+fPlyFi9ezODBgymi+YFFRCQdmjMHpk+3XebmBqNHmwPmW23eDPPmmYPs5coFoaEP1zk7q9m+iIiIpBiHBvrxKVy4MN27d0/NQ4qIiDjMsmXmIPlROTnBsGFQoUKUhSdPQrdutsF9VJUra3R9ERERSTEO66PfqVMn8ufPz+XLlx21SxERkUfGxo3w+ecxl/fta6dy/rvvYg/yAZ57zqF5ExEREYnKYYH+nj17qF+/Pj6x1FDs27fPUYcSERFJVfv3w8cf2w6aD/Dhh/D669ESHz0KK1bEvjMnJ6hd28E5FBEREXnIYYF+zZo1GTx4MB4eHnbXd+nSxVGHEhERSTWnT0PXrnD3ru3yZs2gXTs7G3z3Xdw7rFQJsmZ1WP5EREREonNYH/3q1avTrl07AgICKFGiBAEBAVgsFgBCQkLYvHmzow4lIiKSatatg5s3bZfVrQs9e8KDf3MPHTwIa9bYLmvQAI4fh337IFs26NUrJbMrIiIi4rhAv3Xr1ty6dSvW9ZYY34ZEREQefa1bm4Pkjxpl/l2lCgwcaLbAt3HlCgwfbrvMx8cM7DNlguvXwdfX3JmIiIhICnJYoJ87d262bdtG4cKFY6y7f/8+ZcqUcdShREREUtVbb5mt7efPhxEjzOn0rMLDYdYsmDo1Zvv+Nm3MIB/UXF9ERERSjcMC/d69e9sN8gFcXV3p06ePow4lIiKS6l5+2WyyH6Mm/6uvYOHCmBv4+cGbb6ZK3kRERESicthgfK1bt2bixImULl2ahg0bAhAREcEHH3zAlClTaNOmjaMOJSIikiZiBPmHDtkP8r29zWb8Xl6pki8RERGRqBwW6I8fP56JEyfStGlT8uTJY+7cyYmJEycSEBDAtGnTHHUoERGRFLF6NZw6lYgNfvrJ9m+LBV57zQz+y5d3ZNZEREREEsxhgf7KlSvZtm0bAwYMIGfOnDbrXnvtNQ4dOuSoQ4mIiDjc5s3Qp485Zd6uXQnY4PJlWLbMdlmHDtC/v/rji4iISJpyWKBfrFgxXF1dAfsj7AcFBTnqUCIiIg519Ch8/LE5rl5gIHzwAaxaFc9GP/9sbhDJzU198kVEROSR4LBA/9KlS4SFhdldd/jwYc6ePeuoQ4mIiDjM5cvQtSsEBz9cFhoKu3f/n737joriasMA/uzSQYqogA0UFQUVsBujYu8llpjEXpJYE3sssZdoYiF2Tey9RGP8jCWxJUaNiL3EqBFFRUVFAens3u+PlZVhl+ossMvzO4ejc+fOzLtwKe/elsFFcXHA7t3SsnbtACcnQ4RIRERElC2yrbrfrl07NG7cGCNGjMCjR4/w559/4tGjRzh8+DD27t2LPfoWKyIiIspDMTHA8OGaZD+1pk015en63/80Xf+pde8ue3xEREREOSFbot+tWzc8f/4cvXv3RlxcHFavXg0hBOzt7bFy5Uo0adJErkcRERG9s6QkzXD927el5X5+wMyZelbYT/HPP8DSpdKy998HypQxRJhERERE2SZbog8AQ4YMwccff4xff/0VYWFhKF26NNq1awcHBwc5H0NERPROhABmzdIswJeauzuwcKFmur1eDx9quvpjY6XlPXoYJE4iIiKinJA10QcAZ2dn9OrVS+7bEhERyeaHH4Bff5WWOTsDS5YAjo7pXHTjhmZZ/ogIaXmrVkCtWgaJk4iIiCgncpToP336FK6urjl+6LteT0RElFO//AL8+KO0zMoK+P57oGRJPRc8fAisWgUcPKh7rlYtYMoUQM9uM2Q8VCoVkpKS8jQGtVqNpKQkxMfHQ5nuvBGivMM2SsbAmNuphYUFzMzMZLtfjhL9atWqISwsLMcPfdfriYiIcuL0aWD2bGmZUgnMmQP4+KQqTEgADhzQdPtfuqT/Zl5ewPz5GYzzp/xOCIEnT57g1atXeR0KhBBQq9WIjo7Wu00xUV5jGyVjYOzt1MnJCW5ubrLEnqNEXwjxTg991+uJiIiy684dYPx4QK2Wln/1FdCwYaqCxESgXz/g1q30b+bpCSxeDNjZGSRWyh0pSb6LiwtsbW3z9I9CIQSSk5Nhbm5ulH+ckuljGyVjYKztVAiB2NhYhL/ZBqh48eLvfM8cJfqvX7/GzJkzc5yw5/XwOCIiKliioxUYM0ahs4Zenz5A165pKm/bln6Sb2cHDBgAfPwxe/KNnEql0ib5RYoUyetwjPaPUyo42EbJGBhzO7WxsQEAhIeHw8XF5Z2H8eco0Y+JicG0adNynOgXKlQoR9cRERHlhEIBeHgAqWeNtWgBDB2apuKrV8Datbo3cHAA2rUD+vcHnJwMGCnllpROB1tb2zyOhIiISCPld1JSUlLeJPrr1q17p4daWFi80/VERETZUaiQQGCgwA8/KLB2LVC5MjBtmmZ+vsSPPwIxMdKymTOBZs0A/u4yScbW40NERKZLzt9JOUr0+/TpI1sAREREuUGpBIYMASpVAqpU0TPyPjQU+OknaVnr1poPIiIiIiOSo0SfiIjIWDVpks6JxYsBlertsaWl5p0BIiIiIiNjXJsLEhERGcKRI8CJE9Kyjz8GZFj1lohIn9jYWIwZM0anXKVSYc6cObCyssL69etzP7A3/v33X/j7+6NQoUJo1KhRnsWRn50+fRrly5c3yOdny5Yt8Pf3h0KhwLRp02S/f1ZMmTIFL168yJNn07tjok9ERCZFpQKWLtWsq5clERHA3LnSMkdHzRZ7REamTJky8PHxgb+/P/z9/VG+fHkoFAq4u7try3x8fFCmTBmda+vVqwcHBwfEpF2n4o3GjRvD3d0dCoUC5cuXh7+/P/z8/ODu7o7KlSsjMDAQqlSjYk6ePKlNFC0tLbX1K1asiJo1a2L8+PEIDQ3VeU6PHj0kcTdu3Fhy/uTJk2jfvj2qVq0Kf39/VK1aFQ0aNMC4ceNw+/btDD8/gYGB2uTJ2dkZ/v7++Pfff7Xn582bp3P+v//+S/f1p/5I7/OqT2RkJBo0aIBixYpJyu/cuYMGDRpg165dSExMzPQegwcPhpeXFypXroyGDRvizJkzeuv+/fffaNiwISpXrgwvLy8MGjQIkZGRGd6/YsWKuHTpEmrWrJml15SZZs2awcnJCQqFAhUrVsSyZcsk5xMTE+Hv7w8HBwd4enpi8eLFsjwXAJ4+fYqhQ4eiWrVq2jbbunVrXLhwQVsnNDQUEydORK1atVCjRg34+PjAz88Pixcv1lmAPDExERMmTEDfvn3x/PnzTJ+/fv16+Pr6wtfXFz4+Ppg3bx7Uafd6TaNHjx64dOlSjl5vWvfu3YO/vz/Mzc1hZmYGf39/nD17VlLn9OnT8Pf3h1KphK+vL06fPo2KFSuibt26ePjwoSxxUC4TlG2RkZECgIiMjDToc1QqlXj8+LFQqVQGfQ5RTrGNUn60YIEQNWoI0a6dEP/+m0k7VauFGDtWc0Hqj0OHcj9wylVxcXHixo0bIi4uLq9DEUIIoVarRWJiolCr1e90Hw8PDxESEqI9Pn78uAAg1q1bpy0LCQkRHh4ekutu3LghzM3NdeqmtW7dOgFAHD9+XBL7okWLBAAxbdo0nWsCAgJ0nnf9+nXRuXNnYWtrKzZu3Khzjb64hRDi0KFDQqlUisDAQO33tFqtFps3bxZKpVL8+OOP6caeGgDRp0+fbJ/X9/pT6Pu8pqdr166ia9euOuX9+/cX27dvT/f1p0hOThb16tUTDRs2FDExMUIIIRYvXixsbGzEhQsXJHUvXLggbGxsxJIlS4QQQrx+/Vo0aNBA1KtXTyQnJ2caa0BAgAgICJCljQYGBgoA4vvvv9d7PjExUZQoUUI8fvw4x89I68GDB8Ld3V0sXLhQ22ZCQ0NFyZIlxaZNm7T11q1bJwoVKiTOnj2rLdu7d69QKpVi1qxZknvu3btXfPbZZyI6Olp4eHiIgICAdJ+/YsUKYW1tLYKCgoQQQty5c0cUK1ZMjBs3LkvxAxBTp07N4qvNWMeOHQUAcenSJb3nL168KKpUqSIpGzVqlKhXr947/2zKLXL9LM0rmf1uyk4eyh59IiIyGQcOAFu3av7/+LGmU/748QwuOHQIOHZMWtakiWbvPSIjFBAQoN2LOT02NjYICAiQlK1ZswZz586FnZ0d1qxZk61nKhQKfPnll3BwcMjyUHMfHx/s3r0bnTt3Rr9+/XA8w2/Ut3788Uc4ODhgxIgRUL7ZNkOhUKBHjx5o27ZttuKWm4uLC3744YdM6/3zzz/46aefMHnyZJ1zq1atwkcffZTpPbZs2YLTp0/ju+++027H9cUXX8DDw0NnOsDo0aPh4eGBYcOGAQDs7Ozw3Xff4fTp09ia8gMzl/Ts2ROWlpbptrF9+/ahVq1acHNzk+2ZX3zxBapUqYKRI0dq20zp0qXx888/o2HDhtp6bm5uGDNmDGrXrq0t69ixI6pUqYLdu3dL7tm2bVv88MMPmW4ZHh0djXHjxqFv376oVasWAKBcuXIYNWoUFixYgJCQELleZpb0798fANL9/K9ZswYDBgyQlI0bNw5nz57Fvn37DB4fyYuJPhERmYQbN4BZs6RlajWQZmTsW//+q3uBoyMwfjzALdcKJrUaePky/31kMsQ3tQ0bNsDV1TXDOq6urtiwYYP2OCkpCfv378fgwYPRo0cP/PXXX5Lh7FkhhIBKpcr2fN558+ZBqVRi/PjxWaqfnJyMmJgYPHv2TOfchg0b8PHHH2fr+XJp1KgRgoKC0CILbxJu374dbm5u8PX11Tlnbp61dbJ37NgBe3t7SVIKAE2bNsXx48cRHh4OAAgPD8eJEyfQrFkzSb3atWvD3t4eO3bsyNLzUuvcuTMcHR1RvHhx+Pv7Izo6GgAQFRWFL7/8EmXKlEGlSpVQuXJlLF++XHJt0aJF0aFDB1y9ehXnzp3Tube+RPNdhIWFYd++fejQoYPOuVq1asHd3V173KpVK0ydOlWnXnR0tM4Ui6x+nQ4dOoSoqCidz3+zZs2QnJys8wZCZl68eAF/f3+YmZmhQoUKkjeFbt26hU6dOsHDwwPly5dHgwYNdN5Aa9OmDYoXL44tW7YgISFBci4hIQE//fQTevbsKSl3cXFBtWrVsHnz5mzFSnlPllX3q1atiqtXr8pxKyIiomyLiADGjAHSTmmdMEGzld6bv3k1FV6/1vw7ejSQ5g8djBsHODvnSsyUD0VGAs2b59njzYTQ/ybT778DhQsb7Ln/+9//0LZtW9ja2mLYsGH44YcfsHbtWnz77bdZuj4xMRGzZs1CTEwMOnbsmK1nu7m5oXr16ggKCsKzZ890Eqq0mjVrhl9++QVNmjTBlClT0K5dO+0IhsIG/BzJ6ciRI6hYseI73ePSpUsoW7aszp7bnp6eEELgypUraNasGS5fvgwhBDw9PSX1lEolypQpk6M54N27d0dYWBgOHDiAIkWKANC8WdSqVStERkYiKCgILi4uOHv2LBo3bqzt1U4xYMAA/PTTT1izZo22lxsAHj58iKtXr6K1jFuanjp1Cmq1Gvb29hg2bBhOnjyJmJgY+Pr6YuLEiRmuPxAdHY1vvvkGMTExmDNnTo6en/L5Tfv5TznO7ue/SJEiaNKkCapVq4Y1a9ZoRyjcv38f9erVQ/PmzfHff//B3NwcS5YsQcuWLXHs2DHUr18fgOYNit69e+Pbb7/Fzz//LHljbM+ePWjQoAGKFi2q81xvb2/89ttv2YqV8p4sPfq3bt3CuHHjcn34CRERUXKyphNem8y/0a0bIOnE2bIFaNRIMyy/XTvgyRPpBZ06ccg+FUjr1q3D4MGDAWg6bxo2bIgNGzYgOTk53Ws+/fRT+Pv7w9PTE7a2tpg/fz4+/PDDLA1dT8vDwwNCCNy7dy/TuoMGDcKIESPwzz//oFu3bihatCjat2+PzZs3Iy4uLlvP3bdvn86CeikfmUl5/SkfwcHBWX5uWFgYXFxcshVrWs+ePYODg4NOeUpZyoiHlH/Tq6tvZERGdu7ciQULFuDgwYPaJB/QTCU4c+YMpk2bpn1tderUwSeffILZs2cjNjZWW7dFixYoVaoUtm3bJilfv349evbsmeXe8qxIWexx4MCBqFq1Ki5cuIBLly7BxsYG9evXT3fxQh8fHxQuXBj/+9//sGfPHlSvXj1Hz0/v85/265RVX375JaKioiRJPgBMnToVr169wsKFC7Wfv2HDhsHd3V1nlEJ6w/czGk3h4uKCp0+fprtQJ+VPsiT6tra2iI6ORrVq1dCuXTscPHhQjtsSERFlauFCINXCyQCA6tWBUaPeHpv/8w8Uixbpdvmn8PcHvvrKYDES5VePHj2CEALly5fXlg0bNgxPnz7Fr7/+mu51q1evxqVLl3Dnzh3MmDEDvr6+mDlz5jslsGl7p/UxNzdHYGAgHjx4gAULFqBu3bo4fPgwevXqBR8fn2yNMO3QoQMuXbqk9yMzKa8/5SM7K9M/ffoU1tbWWa6fHeLN6vBZ+VwKIbJUL8WWLVvQp08fBAYGwjnNyKfDhw8DgLbnOEXVqlURHR0tGaavVCrRt29fREVF4aefftLGsm7dOm0SKpeUN39q1qyJgQMHwszMDIUKFcLy5cthZmaGSZMm6b3uxo0biI2NxahRo9CkSRPMmzdP1rhSZPXzL4TAkCFDsHnzZixZskSS5AOaz3+5cuVQPNWWsAqFAlWqVMFff/2FpKQkbbmXlxfq16+Po0ePat9cu3fvHu7cuYPm6YxoShk1k9lODZS/yJLoe3t7Y/ny5QgNDUWrVq0wduxYlCtXDvPnz0dERIQcjyAiItKxbx+wc6e0zNVVs1uetlNIrYbdypXp38TVFfjuO8DCwmBxEuVX69evx40bNyS90zNnzoSFhUWWFuVTKpWYMGECkpOT0blzZ8n2ell1//59KBQKeHh4ZPma4sWLY9SoUTh69CiePHmC6dOn4969e9qRCbntxIkTWd5L3dzcXGe7tuwqWrQooqKidMpT5sunDL9O+Te9uvqGaetz5coVrFq1CkWKFMHIkSN1vs4pW8y1bt1a0pZWrFgBV1dXvHz5UlK/f//+UCgU2jZ2/PhxlCpVChUqVMg0lrSjKTJaJM7e3h4AdHrkHR0dUb58eZ0t5lKztLRE//790bt3b0yYMEG7zWJ2pPf5TznO6ud/2bJlePToEV69eqV3Ecfnz5/j0aNHOiNTLl++jMKFC+t8/gcMGKB9cwUA1q5diz59+ui8gZAipb2md57yJ1nGxpw+fRqAZhjKsGHDMGzYMBw/fhwrVqzAzJkz0aVLFwwdOhQ1atSQ43FERES4dg1IO23S0hKYPz/NNPtDh2B+86b+RN7FBQgM5Lx80nB01MyHzwtCQJWcrBl2m7aXz9HRQI8U2LdvH27fvg0zMzPJuaFDh2LVqlV4/PixpJdQH4VCga+//hqdO3fGtm3bdBbzykhYWBguXLiAOnXqZDo/H9AkhK6urvDx8dGWOTs7Y8qUKTh58iROnTqV5WfnFTc3N8mQ9Zzw9/fHqVOndHrl7969C4VCoV3oz8/PDwqFAnfv3pVcnzJVokGDBll6nrOzMw4cOIDffvsNXbt2xXfffYcJEyZoz6ckrH/88Qccs9Bey5Yti0aNGuH48eO4fft2thbhW716dZbqAdC2E3171qd9wyUuLg6WlpY63wv+/v5QqVS4cOECypUrl+Vnp1wLaL4u1apV05anfD38/PyydJ9mzZph+/btGDFiBAIDA9GpUye8//772vNFixaFm5sbLl68mKX7ffjhh/jyyy+xbt06TJo0CRs3bsSJEyfSrR8TEwOFQgEnJ6cs3Z/yB4O9LdO4cWP069cPPj4+WL9+PWrXro06depg48aNkuEjRERE2RURAYwdC6T9dTJpEuDtnaogLg6KZcukldzdgb17gT17NEMCvLwMHS4ZC6VSs+hdfvswUC/aiRMnUKlSJZ3EBtBsK6ZSqSSr82ekY8eO8PLywuzZs/UmVekZM2YM1Go15s6dm6X6GzZsSDcmMzOzLL1ZYEhZ6aF1d3fH48eP3+k53bp1Q1RUlM7K9ceOHUNAQIB2CoWrqysaNmyIo0ePSuoFBQUhOjoa3bp1y9LzSpUqhUKFCqFDhw7o1asXpk2bJpkm0bJlSwDQSTQjIyPRuXNnvSN8UxL7BQsW4OjRo+jatWuWYsmOhg0bwtnZGZcvX5aUx8bG4vbt26hTp462rHXr1tiZdogYNCNOgKz3vqfWunVr2Nvb63z+jx49CjMzM3Tp0iVL96lUqRIAYM6cOahQoQL69u0rmS/fsmVL3LlzB69fv5Zcd/r0aQwdOlTnfnZ2dvjoo4/w4MEDjB07FhUqVECZMmXSff7jx4/h4eFhsCknZBiy/OZIPb/l5cuXmD9/PsqXL4927drh7NmzqFevHjZt2oSxY8di48aNqFChAoKCguR4NBERFTAqlWY1/bRrGPXoAbRpk6bypk26FUeMAEqV0iT8Mi76RGRs1qxZk+4q+Y0bN4ajoyPWrl2bpXsplUqMGTMGN2/e1JsspXXjxg106tQJv/zyCzZu3IiAgIAsx71ixQocO3ZMe6xWq7Fp0yYcOXIEw4cPz/J9DCEr2wu2a9cO//zzT7beEEmrV69eqFu3LsaNG6cdHbB8+XKEhIRg/vz5krop+7WnbHUXGxuLcePGoW7dutkafZFi0aJFcHFxQe/evbWddz169MB7772Hr776Sru1X1xcHIYPHw5zc3OdOf0A0KVLFzg5OWHVqlX44IMPYGtrm+1YMmNlZYV58+bhxIkT2LVrFwBNexk/fjwSEhIwe/ZsSf05c+ZoE3tAM0Jh+fLlqF27Nho2bJjt59vb22POnDlYv349zp8/DwAICQlBYGAgRo4cqbMaf2ZsbGywYcMGhISESHYymDZtGqysrDBixAjt1+Tx48cYOnQoKleurPdeKW+0LFq0KNPRFFevXkXTpk2zFSvlA0IGxYsXF+fOnRN9+/YVtra2QqFQCHt7ezFo0CBx5coVnfoHDx4Uvr6+cjw6T0RGRgoAIjIy0qDPUalU4vHjx0KlUhn0OUQ5xTZKeWHRIiFq1JB+DBokRHJymoqxsUI0bizUNWqIRF9foa5RQ4jBg4VQq/Mkbspf4uLixI0bN0RcXFxehyKEEEKtVovExEShlrF9dunSRZQrV04AEKVLlxZNmzbVnqtdu7awtLQU3t7eYsOGDZLrnj9/Lvz8/IStra0AICpXrix+//130ahRI1G6dGkBQJQrV074+flJrouPjxdubm6icOHCws/PT5w4cUL4+fkJOzs7YWFhIfz8/ISvr6/w8vISNWrUEOPGjRP379/Xibt79+6SuBs1aqQ9FxwcLMaMGSNq1qwpKleuLKpWrSo8PDxE/fr1xcaNGzP9nCxcuFD4+fkJANo4b968qT3/3Xff6Zy/c+eOEEKIatWqiSJFiggAwtXVVXh4eOh8ZOVP64cPHwozMzNx7NgxnXO//vqr8PPzk7x+Pz8/sWLFCp26L1++FJ9//rmoUKGC8PHxEfXr1xd//fWX3meeOnVK1K9fX/j4+Ijy5cuLzz77TLx8+TLDOFPagZ2dnbCzsxN+fn7i4cOHYvDgwaJYsWICgChfvrxYuHChEEKIqKgoMXz4cOHh4SEqV64s/Pz8xPjx4zP8HhsyZIgAIIKCgjKM5V3t2LFDVK9eXZQrV054eHiI1q1b6zzz1KlT4tNPP9W2K09PT1GpUiUxfvx4vX/z16hRQ/j5+QkLCwvt56d169Z6n79mzRpRpUoVUbVqVVGpUiUxd+7cTP92OnTokLYturq6ivbt2wshNN+7NjY2QqFQCD8/P/Hnn38KIYS4deuW6NKliyhZsqTw9/cXtWrVEmvWrMnwGT4+PsLZ2VnEx8enW+fWrVsCgDh9+nSG98ovDPGzNDdl9rspO3moQoh3XA0EmndxFQoFhBDw8fHB4MGD0bt3b+0CGPq4uLho3/EzNlFRUXB0dERkZKTe7UrkolarER4eDhcXFy5+QfkS2yjltsRE4NNPgRs33pa5uACbN+uZZr9rF/DttxAAkpOSYG5hAcX27UCq1cWp4IqPj0dISAjKli2bL4ajCiGQ/GaOfnZWQifj9NVXX+H06dP4888/jeb3J9towfTxxx9DqVRi69ateR1Klhh7O83sd1N28lBZfrIolUp07doVx48fx7Vr1zB06NB0k/y4uDh06NBB73wwIiKijFhaAqtXA507a47NzTUL5usk+Wo1sG2btOz995nkE1G+MGfOHLi7u6N37955HQpRur7++ms8e/YMP/74Y16HQjkgy+TEYsWKYceOHVmqm7LwRF5tf0JERMbN0hKYOBGoUgVITtb8q+PUKSA0VFIkPvkExvfePhGZIjMzM2zdutVoekmpYPLz88OMGTPYQWukZEn0f/vtt3TP7dq1C+Hh4fj8889hYWEBS0tL9OnTR47HEhFRAdahQwYn0/zxnOzpCbNatQwbEBFRNnXv3j2vQyBKV1Z3ZaD8SZah+ylbaugTExODxYsXY+DAgXI8ioiIKH1XrwKjRgFptpyK79RJd29yIiIiIhMlS49+Ruv59e3bF127doW3ZGNjIiKizN29C5QoAWRprbSVKzUT+NMqXBgJjRrJHRoRERFRviVLj35mKxrGxMQgISFBjkcREVEB8fw5MHgw0K8f8PBhJpWfPgXWrNF7SvTooZnYT0RERFRA5LhH39PTU/v/Z8+eSY5TS0pKQnh4OBo0aJDTRxERUQGTnAyMGwe8eKH56NkTmDkTSPdXyaFDQNrRZQ4OQJ8+QI8emncNiIiIiAqIHPfoq9VqCCG0w/ZT/p/2w9HREV26dOG2DERElGWLFgGXL789fv0a2LVLN5cHoCn89VdpWaNGwP79mkTfSPaoJiIiIpJLjnv07927p/1/8eLFERISIkc8RERUwB0+DGzbJi0rUQKYNSud9fRu39ZM5k+te3fA1tZgMRIRERHlZ7J0c3z33Xdy3IaIiAq4//7TDNFPzdIS+O47zUh8vQ4elB67ugL+/oYIj4iIiMgoyJLo9+rVK9M67du3l+NRRERkol6/BsaOBeLjpeXjxwOVKqVzkVqtmZ+fWuvWHK5PREREBZos2+uFhoZmeF4IgaCgIDkeRUREJkgIYPp0IO2vk06dgA4d9Fxw44ZmfP+dO8CzZ9JzbdoYLE4iIiIiY5CjLo/mzZujRo0a2oX4ypQpg7Jly6b74enpiedc8ZiIiNKxbRtw/Li0zMdH08Ov4/BhoG9fzZD927el57y8gHR2gSEiym3Hjx+Hv78/LC0t0bdv37wOR681a9bAwcEB06ZNM/izfvzxR1y6dMngz0lPfHw8Ro4cCaVSiRMnTmTpmnnz5sHHxwcKhQLr1683aHym7uHDh2jRokWmW7PL6aOPPoK7uzsUCoVkjbnccunSpTxblD5HiX5YWBiePn0KtVoNALC2tkbv3r3T/ejVqxesra1lDZyIiEzDlSuaVfZTc3QEvv1WMz9fYu9eYNIkzZB9fdq2NUSIREbn8uXL+Pjjj1G1alX4+/vD19cXderUwYgRI3D+/Pm8Di/fWr9+vazJXOPGjXHp0iWUKFEix/d4/PgxZs2ahbp166J69erw9vZGQEAA9u3bp7d+WFgYPvnkE3h5eaFSpUpo06YNbt68qVPv6dOn6NChA5YtW4bo6Oh0nx8aGoqJEyeidu3aqFOnDipXrgw/Pz8sXrxY2+mXFZ9++il+/fVX+Pj4aMv69u2L8uXLw9/fX/LRo0cPnevVajXmz58PHx8f+Pr6wtfXF+vWrcvy88+fP48aNWrgxIkT2Yp77NixOHDgQJbrZ+T06dPw9fWFQqGAjY0N/P398eDBA0mdn376CVWqVIG5uTn8/f1lSU5Tvoa1atVCjRo14OPjk+7XUAiBZcuWwdfXF5UqVYK7uzu6deumd+H1J0+e4NNPP4Wnpye8vb3h5eWFWbNmITk5Wafuli1bUK9evRy9nuvXr2PEiBGoXr269nugTp062LJlS6bX7tixAzNmzMj2M/VZvHgxPD09oVAoUKxYMbRs2VKnzvjx41GmTBk4OTmhWbNm8PHxwf79+/H555/LEkO2iBxISEgQsbGx2mM3N7dMr8lKHWMRGRkpAIjIyEiDPkelUonHjx8LlUpl0OcQ5RTbKL2rly+FaN1aiBo13n7UrCnEqVN6Ku/bJ62Y9qN/fyESEnQuYzslfeLi4sSNGzdEXFxcXocihBBCrVaLxMREoVar3/leV65cEdbW1mL06NEiIdX3xG+//SZsbW3F119//c7PMFUBAQEiICBA9vt6eHiIPn365OjagQMHitKlS4tbt24JITRtZdasWQKAWLJkiaRuVFSUKF++vPj4449FUlKSUKvVYsyYMaJYsWIiNDRUUnfChAli0aJF4u7duwKAmDp1qt7nr1u3ThQqVEj8/fff2ja6d+9eoVQqxaxZs7L0GpYuXSpKlSql8/3Wp08fcfz48SzdY9y4ccLFxUX8999/QgghgoKChLW1tVixYkWWru/QoYM4cuSIWLdunQCQ5ecKIURISIgAINatW5flazLi5+cnLCwsRHh4uN7zP//8s2jXrp0szxLi7dfw7Nmz2rL0vobDhg0TNjY24tSbX8Tx8fGic+fOonjx4uLJkyfaei9evBAeHh6iQYMG2pzo+vXrwsXFRfTr109yz1evXokGDRqI//77T/Tp00dkNwWdOnWqKFGihLh9+7a2bMmSJQKA2Lx5s6Suvp+lKV/zkJCQbD1Xn/DwcGFhYSH8/f3TrTN8+HAxf/587XFcXJwoUaKEWLlyZab3z+x3U3by0Bz16FtaWsLGxkZ7nJV3PjnUhYiIUlOrgcmTgfBwaXn//kC9emkq37sHzJ2re5NOnYDvvwd27ABWr9YzBIAoZ16+zPlHQkL69331Kuv3yakNGzYgPj4ekydPhmWq74nmzZtjwIABOb8x5ZmRI0eiQoUKAACFQoGJEyeiVKlSOjtfBQYG4u7du1iwYAHMzc2hUCgwc+ZMJCYm6gzNnzFjBr788stMh1G7ublhzJgxqF27trasY8eOqFKlCnbv3p1p7Gq1GrNnz8bYsWNzPML37t27mD9/PkaNGgXPN9OzatWqhT59+mD8+PF4/fp1pvfYvXs3mjZtmqPny61///5ISkrCpk2b9J5fs2aNrN+rWf0ahoSEYNmyZejZsyfqvflFbGVlhcDAQDx+/BjffPONtu6SJUtw//59zJ07Fw5vtsXx8fHB0KFDsW7dOly4cEFb197eHidOnNB+7bKrTJkymDJlCsqXL68tGzZsGBwdHbPUBuVUrFgxtGvXDpcuXZK8xhSJiYnYuXOnZLF6a2trjB49GlOnTkViYmKuxSrLssT6hi3kpA4RERUcO3YAZ85Iy2rWBAYOTFMxKUkzXD9t9jRgADBxIlC/PlCuHJCLc/7I9DVvnvOPX35J/75du+q/pkULoHVrM7Ro8bYsp1KGzeobIjt79myMGTMGAHD16lW988d79OgBNzc3SQK4ZcsW+Pv7Q6FQYMqUKZg8eTJq164NNzc3jBgxAiqVCgcPHkSzZs1QqlQptGvXDk+fPtVeP3LkSJQvXx4KhQJ79uxBr169UKVKFZQpU0Y7/Hr+/Pl47733UKpUKYwYMUJn+O+cOXNQp04d1KxZE35+fmjZsqXeP7T1EULg+++/h7e3NypVqgRPT0+MGjUKsbGxAIDo6Gj4+/sjODgYwcHB2iHkc/W9wfhGfHw8Jk6ciBo1aqBGjRrw9fVFly5d8N9//2UppqxaunQphg8fLilTKBQoUaIEXqZ5R2jHjh3w8fGRTBWwtrZG/fr18dNPP2mn3QKAuXnW1uRu1aoVpk6dqlMeHR2NYsWKZXr9H3/8gcePH79TLrB7926oVCo0a9ZMUt6sWTNERkbiUNrdV/TI6uvNiqtXr6Jq1apQKBSoXLkyRo4cqT137tw5NG/eXLtWWatWrXTWJejZsyesrKywZs0anXuHhYXhwoULaNeunWzxZvVreO7cOQgh4OvrK6nn7u4OJycn7NmzR1t29uxZANCp6+fnBwD4+eeftWVKpRLKd9gNp2/fvhiY5o+DxMRExMfHZ6kNprVu3TqULVsWVlZW8Pf3l0wB2LJlC/z8/ODl5YUyZcpgwIABOmvNpbwJo+/rt3fvXrz33ntwcXGRlLds2RJPnz7F77//nu14c0qWRP/OnTuYMWMGli9fri3bv38/PD094eTkhBEjRmRrLgwREZm+tm2Bhg3fHhcpAsyerWdnvJUrgbTzSz/8EBg8mMk9kR4pyVDHjh2xdu1aREVFac/Z29vDyckJAFC1alW988e3bNmCQYMGScp69OihTVY2bNiA1q1bIygoCL/99huWLFmCUaNG4fbt2zhy5AiuX7+OGzduYNy4cdrrAwMDsXr1au3/582bh2vXrmHs2LEYMGAAJkyYgHr16uHMmTPYv38/Fi9ejM2bN0timDt3LpYtW4bg4GBcvnwZffv2RePGjfHo0aNMPydjx47F119/jQ0bNuDmzZs4c+YMDh06hK5du2o/L5cuXULNmjVRs2ZNXLp0CZcuXcL48ePTveerV6+wevVq7Ny5E+fPn8fly5dRu3ZtNGnSBDExMZnGlFXm5uY6SVJycjLu3LmDJk2aaMvi4+Nx8+ZNvb2mnp6eiIqKwt27d985nujoaEyYMAExMTGYM2dOpvWPHDkCMzMzSW9salu2bMH7778PHx8fVK9eHRMnTkRkZKSkTkrbS/vaUo5ze4E/b29veHt7Y/Lkybh+/ToCAwMBAMHBwWjYsCH8/f0REhKCkJAQVKlSBQ0bNsSdO3e01zs7O+ODDz7AjRs38Pfff0vuvWHDBvTo0UPWNybSSu9rmPLmnkql0rlGoVDg4cOH2vUc0qubUn7jxg2DxA4Az58/x8CBA1GqVCl8/fXX2b6+devWKFy4MPbu3YtLly5p14RYtmwZevXqhVmzZuHWrVu4du0a7ty5g2bNmkl64lu1aoUSJUpg69atiIuLk9w7vdEYFStWhFKpxMmTJ7Mdb07JkuivWbMGCxcuxIsXLwBoFvf45JNPEBYWhnLlymHlypV5ttogERHlTw4OwIIFwPDhmhH3c+Zokn2JmzeBjRulZZ6ewIgRuRUmkdFp164d5syZg6dPn2LAgAEoWrQomjZtihUrVugkUDnh6+urHdbr6+sLHx8fbN68GYMHDwYAODo6onXr1jhy5Ije6z/44AO4ubkBAD7++GMIIXDt2jXtPf39/eHt7a1z/dmzZ1GzZk3t8SeffAIbGxts3bo1w3jv3r2LwMBA9O3bVzt02dXVFRMmTMDBgwdz/Id30aJFcfr0aZQrVw6AJsEZPnw4QkNDZVu8LT3bt29HbGwsZs+erS2LiIiAWq3WDqNOLaXsWdrtSLPJ19cXzs7O+N///oc9e/agevXqmV4TFhYGZ2dnmJmZ6Zyzt7eHjY0NfvnlF9y4cQPr1q3Drl27UK9ePckCgSlxp31tcr2u7EhKSsJHH32EypUr6yzyNmbMGNja2mLmzJnashkzZkAIofOmSP/+/QHo9gqvW7dOe84QfHx8ULhwYb1fw1q1akGhUCA4OFhyzf3797WjR1LeOKxTpw4A6NS9ePGipJ6cwsLCULFiRbi4uODWrVv45Zdf4O7unu17tGrVCnPmzEHr1q215SlvfrRu3Rrt27cHABQqVAizZs3C5cuXsWPHDm1dMzMz9OnTB69evZKMcggNDcU///yjd/SKubk5ChcuLPuIn4zIkuj//vvv+OmnnzB58mQAwMaNGxETE4Ndu3bh/Pnz2LFjh96hDUREVLApFECvXsC+fYDevxfXrwdSjwizsABmzQKsrHIrRCKjNH78eISFhWHlypVo0aIFzpw5gyFDhqBcuXI4nnYvy2yqVKmS5NjZ2Rmenp6wsLDQlhUpUgSPHz/O9HpnZ2e999R3fUxMDLp16wZfX1/t0PqIiAhJT6k+v//+O9RqNerXry8pr1q1KgDg2LFjGV6fHnNzc9y/fx/t27fX7m5Qt25dAMg0pncREhKCUaNG4ccff0SVKlWydE3KyNp33dbsypUriImJwahRo9CkSRPMmzcv02uePn2a7tz8JUuWYPHixShatCgAzbDv77//Hjdu3JCMFE6PXK8rqxITE9G1a1fcuHEDU6ZMkZyLjY3FX3/9hZo1a0per62tLcqVK6fTzpo1awZ3d3fs2LFDOwLkjz/+gIuLi873g5xu3LiB2NhYvV/DMmXKYNCgQdixYwd+/vlnCCEQERGBwYMHw97eHgC067QNHToUpUuXxpgxYxAaGgpAs6tAyrpsqddzk0uJEiXw77//4vXr12jbti1q1KiR6Rt9qT18+BABAQGoW7euTjJ++vRpREdHZ/nnRP/+/aFQKCQ57rp169C7d2+9b2oBms+JHG+2ZpUsY0KePn0qmTOzd+9eeHl5ad8N6dixI4YMGSLHo4iIyAS9+RtP6sEDIO0f4AMGAF5euRITFWzvMo3S1jb9cz/9JH3vKoUQQHKy6s0Cajl/dmqFCxfGwIEDMXDgQMTExGD9+vUYPXo0evfurbOlV3bY2dlJjhUKhU6ZUqmUzAdP7/qUBE3f9amHBF+9ehX169dHv379cO7cOVi9ebOvTJkySMho9UNAO7928uTJ+Pbbb7XlKpUKrq6uOR5m/9tvv6FVq1aYNWsW9u7dq/3jXqFQZBpTTj169AgtW7bErFmz0LNnT8k5Z2dnKJVKvT2pKb3jRfX+sM0eS0tL9O/fH2fOnMGECRPQuXNn7agGfczNzbM1hfe9994DAJw6dUpblhJ3VFQUChcurC2X83Vlxddff433338fN2/exLJlyzBs2DDtuZcvX0KlUuHcuXPw9/eXXBcREaHzZoRSqUS/fv0wffp07Ny5E/369cvyInxhYWFo06aNpCw70xcy+houW7YM3t7emDt3LiZMmIAiRYrgs88+Q6FChXDo0CHt579IkSL4+++/MX36dLRo0QLm5ubw9vbGzp07Ubt27Wz3tGeHra0tJk6ciOPHj2PgwIFo37699o2IjPTs2RMVKlTA2rVrMXDgQFSrVk17LuXnxIoVKyS994BmBFB8fLykrHz58mjYsCFOnDiB//77D56enli/fn26I5kAzRtT77JWQXbJkuin/uZ9+vQpzp49qzOnKbfeaSMiIhOxebNmaf4UdnbAxx/nXTxUoKTKJWT1Znq8Dk2iD5ibv/vSE8HBwVCpVNqhtYAmkR46dCguXbqE1atXIzw8XLtYlJmZmU4ilpVVzHPT9u3bER8fjxkzZmiT/KxKSQIXLFiAjh07yhbThg0bYGdnhwkTJuTK37n3799H8+bN8fXXX6NPnz46562trVGxYkW98/Dv3r0Le3v7HK16HhcXB0tLS50Exd/fHyqVChcuXMgw0Xdzc9MuepiaSqVCRESEzmJqKW+YpF6M0d/fH9u2bcPdu3dRo0YNyesC3i4AZ2gDBgzA3Llz0alTJ4wbNw6tWrXSrj1QuHBhKJVKBAQESBaiy0i/fv0wY8YMrFmzBp07d8bhw4exYsWKTK8rUaJEthL7lK9h2p5mfV9DhUKBL774Al988YWk7tKlS1GvXj1JWy9RogRWrVolqXft2jUA0OkZfxexsbGwsbHR+T7z9/fHkSNHcPPmTdSqVSvT+6xcuRL16tVD1apV0adPHwQHB2t3Jkn5OTF69GidxS/T079/f/zxxx9Yt24dAgICULZs2Qy/F2JiYrSjmHKDLG8puLi44K+//gKgeRdECIEuXbpoz4eGhqJQoUJyPIqIiIzQ48fA+PFAREQWL4iIAP73P2lZly4Af5cQZWr//v1YuHCh3nNmZmawtLSUzHV2dXVFRJpvzn/++cegMWZXSg956mRTpVIhPO3+nHo0b94cSqVSO3c4tS+//FIyR9/CwkL7pkdMTAz27duXYUxKpVKSfKQ3XUGfxMRE7fpWmUlZeG/mzJmSJL9Dhw6SZ3br1g03btyQlCUkJODUqVPo0qVLjnoTW7dujZ07d+qU379/H0Dmvenu7u54+fKlziiHBw8ewMPDQ2cxt/PnzwOAZD2GLl26wMzMDEePHpXUPXr0KBwcHNCqVStJeXa+DtmRMqR+1apVsLW1Rd++fbUjV2xtbdGgQQNcvnxZZzTL3r17MX36dJ37eXh4oGnTpjh16hSmTp2KDh066IxukUN2voYnT57UWfMgNDQUFy9elIzQjouLw8GDB3Xu+csvv6BEiRI5flNN3/eFj4+PzqKF6cWfkUqVKsHBwQFr167FtWvXJDsR1KtXD4UKFdL7c2LWrFl6t/Hr2rUrHBwcsH79evzwww8ZjsaIj4/Hq1evULFixSzFKgdZEv3+/fujdevWqFmzJmbOnIk6depoh0IEBQWhf//+kn0biYio4EhKAiZMAI4cAXr0ADLshDh2DBg6FOjcGUi916yFBfDJJ4YOlchk7N69Gzt27JD01B8+fBibN2/GwIEDJXOImzRpglOnTiEsLAwA8Oeff+Lq1au5HnNGUqaDzp07V/uavvnmG50Vr/Xx9PTEyJEjsWTJEm0SKYTAypUrsX//fsnw3bJly+LRo0cQQuCvv/7CiAwW/mzfvj2ioqKwdOlSAJo3HvRtYZbR9aVKldK7DWJq//zzDwICAlCnTh0IIbB9+3btx5kzZyQJ9KhRo1CmTBmMGTMGycnJEEJgypQpMDMz05toZtWcOXO0SRWgmUu+fPly1K5dGw1Tb5+iR7t27SCE0LsKe1xcHCZPnqxN9sPCwjB69GiULFlS0qNcrlw5jBw5EgsXLkRISAgAzciVDRs24JtvvpEM254zZw5KlCihM/xaTi4uLli5ciVOnToleVNt3rx5ePz4sXYBPgD4999/MWLEiHQXLkxJDhctWpSlYfs5ldWv4fTp0zFx4kTt1yQ8PBy9e/dGnz590KFDB229Fy9eoG3btpI1P44ePYrAwECsX78+x3P00/u+mDx5suQNiJ07d2L37t3o0qULypYtm61nNG3aFEOGDMG8efO02wTa29tjzpw52LZtGw4fPqytu2/fPixdulRvLmtra4tPPvkEjx49wpEjRyQd3Wml/Ext2rRptmJ9J0IGarVafP3118LHx0e0adNG3L17VwghhEqlEmXKlBFlypQRBw8elONR+UJkZKQAICIjIw36HJVKJR4/fixUKpVBn0OUU2yjlBXz5wtRo8bbj1q1hPjjDz0VjxyRVkz9MWNGjp/Pdkr6xMXFiRs3boi4uLi8DkUIoflbKjExUajV6ne+182bN8WkSZNEvXr1hI+Pj/D19RVlypQRNWvWFN9//71ITk6W1I+MjBTdu3cXJUqUELVr1xZff/21mDx5sgAg/Pz8xPbt28WhQ4eEn5+fACBcXV1Ft27dRFRUlPDz8xN2dnbCzs5O+Pn5iaioKNGtWzfh6uqqvf7XX38Vs2bNEuXKlRMARLly5cR3330njh07lqV7Pn36VAghxIYNG4S3t7coU6aMCAgIELNnzxYlS5YUhQsXFrVr187087J48WLh7e0tvLy8hL+/v+jRo4e4f/++pM6///4ratWqJSpVqiSqVKki9u/fn+E9582bJzw9PYWXl5cICAgQK1as0L6eDz74QPsaLSwsROHChYWfn5+IjY0VQgjRu3dvUbJkSfHkyZMMn9GpUycBIN2PkJAQSf0HDx6Ibt26iQoVKoiKFSuKVq1aievXr+vc9+LFi8LPz094e3trY/bz8xOTJ0+W1Dt16pT49NNPReXKlUWVKlWEp6enqFSpkhg/fnyW/xb29vYWU6ZMkZQlJCSIH3/8UbRo0UL4+PgIb29v4e7uLvr37y8ePnyocw+VSiXmzp0rKlWqJKpWrSqqVKkiVq9erVPvxx9/FPb29uK3337TKffz8xOlS5fWtkM/Pz/xyy+/ZBj72rVrtZ+j0qVLi4EDB4rnz58LPz8/YWZmJiwtLYWfn5+4c+eOEEKIc+fOiRYtWoiSJUuK6tWri/r162f4jPj4eOHs7Cx8fHwyjONdpP4aVq1aNcOv4ffffy/8/f1F2bJlRbVq1USdOnXEihUrdH6HRkZGio8++kh4eHgIHx8f4efnJzp27CjOnz+vN4aBAwcKPz8/UbhwYe3PBj8/P/Ho0SNJPX3fFwcPHhTdu3fX/jzz8PAQfn5+Ys6cOSIhIUFyfdqfpUOGDNF+zb29vcWPP/4oDh06JCpWrCgACGdnZ9GoUSPt9Vu3bhXVqlXTvv4OHTqIK1eupPu5DQoKEgDEkCFDMvgKCDFx4kRRsWLFTH/GZ/a7KTt5qEIIbnCfXVFRUXB0dERkZKTeLUzkolartXPocnPhBqKsYhulzBw9CqTaShsAULo0sGlTmlH4ISFAnz6AnnmcUCqBnTuBMmVyFAPbKekTHx+PkJAQlC1bNt0VwXOTEALJyclvFuPjukaU/7xLG/3111/Rs2dP3Lp1S2dOPpGc8uPP0vDwcHh5eWH79u0600zSyux3U3byUP7FQ0REBnHvHpBmi2FYWgLffpsmyY+JAcaM0Z/ku7gA06blOMknIqK817ZtW8ycORMtW7bUWQ+CyJRFRESgZcuWmD17dqZJvtxkWXU/xeXLl7Fp0yb8+++/ADQLHvTs2TPXVsIkIqL8ISoKGDlSk8On9tVXenbH+/ZbINW8QQBAq1bAF19oEv188o48ERHl3LBhw1C7dm28fPkyV1ceJ8pLL1++xKpVq/JkvTrZEv3Zs2dj6tSpklUmf/31VwQGBmLGjBmYOHGiXI8iIqJ8LDlZs8J+2m2627YFdBbhvXABOHBAWlaxIjB5MpDNLbSIiCh/4+LcVNCUK1cuwy33DEmWRP+XX37B5MmTUadOHXTt2hUlS5YEADx8+BA//fQTJk+ejCpVqkhWaiQiItO0cCEQFCQt8/bWrLwv6ZxXqYB586QVCxXSlDHJJyIiIsoxWRL9wMBAzJkzB+PSrrgEYMyYMZg7dy4CAwOZ6BMRmbjduzXr5qVWtCiwYAGgs6bM7t3A7dvSsiFDgBIlDBojERERkamTZTG+f/75B6NHj073/OjRo/XunUlERKbj3DnNdPvULC01Sb6LS5rKL18CK1dKy8qXBzLYg5bIELj5EBER5Rdy/k6SbdV9c/P0BwdYWFjkm+0NiIhIfg8eaLbRS7VMCwBgyhSgcmU9F3z/vWbFvtS++gowMzNUiEQSFhYWAIBYfbs9EBER5YGU30kpv6PehSxD993c3PD777+jefPmes8fOnQIrq6ucjwKAJCYmIipU6di3rx5uHPnDsqk2XZp1apVWLVqFWxsbODk5IQffvhBu24AoHmnZObMmdi7dy/Mzc3h5eWFZcuWwdHRUbYYiYgKitevgVGjdPP2/v01i+frCAoCfv1VWtaiBVC9usFiJErLzMwMTk5OCA8PBwDY2trmaadEftz7mSg1tlEyBsbaToUQiI2NRXh4OJycnGAmQ8eHLIl+jx498OGHH2L48OH44IMPJIvx7d69G0uXLsXkyZPleBTu3buHTz75BF5eXlCpVDrn9+zZg6lTp+LKlStwcXHBjBkz0K5dO5w/fx5KpWYAQ2BgIHbu3ImgoCDY2tqif//+6N27N3755RdZYiQiKmiKFwdCQt4eBwQAgwbpqZiYCMyZIy0rVEjzTgFRLnNzcwMAbbKfl4QQUKvVUCqVRvXHKRUcbKNkDIy9nTo5OWl/N70rhZBhIkBycjJatWqFY8eO6XxChRBo2rQpDh48mOHw/qy6du0arK2t8fDhQzRu3BghISGSHv0aNWqgWbNm+PbNRNHIyEgULVoUP//8M9q1aweVSoXixYtj+vTpGDx4MADgxo0bqFy5Mq5evYoqVapkGkNUVBQcHR0RGRkJBweHd35N6VGr1QgPD4eLi4v2TQqi/IRtlFKoVMCiRcDWrUCFCsCaNYCtrZ6KP/yg+UhtwgSDzs1nO6XMqFQqJCUl5WkMarUaL168QJEiRdhOKV9iGyVjYMzt1MLCItOe/OzkobL06Jubm+PQoUNYvHgxNm3ahFu3bgEAKlWqhF69emHYsGGyJPkAtIn4w4cPdc69fPkSFy5cwIQJE7Rljo6O8PLywpEjR9CuXTtcuXIFz549Q61atbR1vL29YWdnhyNHjmQp0SciIikzM02nvJeXZgS+3iT/9WtgyxZpma8v0KlTrsRIlB4zMzNZhkm+C7VaDQsLC1hbWxvdH6dUMLCNkjFgO31LnuwbmmR/1KhRGJWHwy/v3r0LADrDHdzc3LTn9NVRKBRwdXXVnksrISEBCQkJ2uOoNxNR1Wo11GlXnpKRWq3WDj8hyo/YRimtNm00/+ptEjt3QhET8/ZYoYAYPz6DC+TBdkrGgO2U8ju2UTIGpt5Os/O6ZEv0M+Pt7Y1//vnHoM9IWaXQyspKUm5lZaU9l5U6ac2ZMwfTp0/XKX/27Bni4+PfOe70qNVqREZGQghR4N+RovyJbZSyLCEBhTdsgDLV8OiEhg3x2sEBMPD8aLZTMgZsp5TfsY2SMTD1dhodHZ3lurIl+snJyfj777/x8OFDJCYm6px/8uSJXI9Kl+2bsaKpe99Tju3s7DKtY6t3rCkwYcIEyUiFqKgolC5dGsWKFTP4HH2FQoFixYqZZEMl48c2WvDExgKLFwODBwPZ2qhk925Nb36q7WLMBg2CrYuL/EGmwXZKxoDtlPI7tlEyBqbeTq2trbNcV5ZE/+bNm2jRogUePXqk97wQIldWPfT09ASg+6bCkydPtFv/pa5TqlQpbXxPnz7VnkvLyspKZwQAACiVSoM3IIVCkSvPIcopttGCZeFCYN8+zQ55gYFA2bJZuOjmTWDdOmlZnTpQVK5skBj1YTslY8B2Svkd2ygZA1Nup9l5TbIk+l988QUUCgXGjx8PDw8PnaRYCIGRI0fK8agMFS5cGNWqVUNwcDC6du0KQNP7fuvWLe0q/L6+vihWrBiCg4NRs2ZNAJo3KmJiYtCsWTODx0hEZKyOHtUk+QDw8CHQty8wfz6Qam1TKZUKWL4c2LRJdw5+374GjJSIiIioYJMl0Q8ODsb58+fT7REHgOXLl8vxqExNmjQJQ4cOxejRo1GsWDEsXrwYVapUQZs3K0SZmZlh/PjxWLZsGXr37g1bW1ssWLAA7du354r7RETpePoUmDVLWiYEkO5WryoV8PXXwJEjuud8fYE3b7QSERERkfxkSfSdnJwyTPIBICgoSI5HITExES1atMCrV68AAB9//DFKly6NXbt2AQA6d+6M8PBwtGzZEtbW1ihcuDD+97//SYY5jBw5Eq9fv8b7778PCwsLVKhQARs3bpQlPiIiU6NWA1OmAGnXfxk/HihdWs8FGSX5np7A3LlALkznIiIiIiqoZEn0W7ZsiTNnzuC9995Lt87IkSMRGBj4zs+ytLTEiRMnMqwzaNAgDBo0KN3zCoUCU6ZMwZQpU945HiIiU7dxI3D+vLSsRQugdWs9lYUApk/XTfLNzYEBAzRD9lMtyEdERERE8pMl0R82bBhGjRqF1q1b4/3334eLi4ukB10Iga1bt8qS6BMRUe65cQNYsUJa5uYGTJiQTqf8li3AgQPSMisr4PvvM5jMT0RERERykiXR9/X1hUKhwNGjR+W4HRER5QOxscCkSZqR+CmUSmDmTMDeXs8FQUGavfdSY5JPRERElOtkSfStra3x0UcfpXteCKGdQ09ERMZhwQIgNFRa1q8fUK2ansrh4Zpu/tSr6ysUmvn4TPKJiIiIcpUsib6joyPWpd0jOY3Dhw/L8SgiIsoFx44Bv/wiLatSBfjsMz2V1Wpg2jQgMlJa/vnnQIMGhgqRiIiIiNKhzLxK5jZv3pxpHSb6RETGITxcdys9W1tNmbm+t4d37NAM20+tYUPN4ntERERElOtkSfSbNm2aaR1fX185HkVERAaUspVeVJS0/KuvgFKl9Fxw4wawZIm0zMVF08OvlOVXDBERERFlU679Fda+ffvcehQREeXQTz8BwcHSsubNgbZt01QUAti1S9Nrn5goPTdtGuDgYMgwiYiIiCgDsszRD027WlMaQggEpR3WSURE+U6bNsCVK8ChQ5pjV1c9W+mFhgLz5gFnzujeoHt3oHbtXImViIiIiPTLUaLfvHlzREREIDg4GAqFAmXKlIFC74bKRERkTAoV0szFf/994LvvNFvpSTrnt27VbKGXnKx7cfXqwLBhuRYrEREREemXo0Q/LCwMkZGRUKvVMDMz4/Z6REQmpnVrzXp6dnapCs+cARYu1H9Bz57A0KGAhUWuxEdERERE6ctRon/x4kWoVCqYmZkB4PZ6RESmSJLkA8C2bbqVihUDJk7kNnpERERE+UiOEn1LS0vJ8fr16zO9Jit1iIgon3r8WHdOfufOwIgRmr33iIiIiCjfkGXV/ZYtW2ZaZxjnbRIR5StqtWa6fXh4Firv26dZaT+FnR0wciSTfCIiIqJ8SJZV91OcO3cOoaGhiImJ0Tn3/PlzOR9FRETvaP16YONGYO9eYOpUICAgnYpqNfDLL9Ky1q0BGxsDR0hEREREOSFLon/r1i107NgRt27d0nteCMFV+YmI8pFr14CVKzX/j4oCRo8GPv9c86HjzBndbv9OnQweIxERERHljCyJ/tChQxETE4Px48fDw8MDVlZWkvNCCIwcOVKORxER0TuKiQG+/lrTUZ9CqQRq19ZTWa0GfvxRWubtDVSsaNAYiYiIiCjnZEn0g4ODcenSJXh4eKRbJzAwUI5HERHRO/r2W+DRI2nZp58C/v56Km/erOn+T+2DDwwUGRERERHJQZbF+FxdXTNM8gHg8uXLcjyKiIjewYEDmo/UfH2BAQP0VL537+34/hTu7kC7doYKj4iIiIhkIEui369fPxw6dCjDOu3bt5fjUURElEOPHgFz50rL7OyAWbMAM7M0lRMTgSlTNP+mUCg0q/almZ5FRERERPmLLEP3x40bh4ULF+K3337De++9h2LFikGplL6HcCbt/stERJRrkpM18/JjY6XlX38NlCih54Lvvwdu3JCWffIJ4OdnqBCJiIiISCayJPphYWHYsWMHgoODsWjRIjluSUREMvrhB92p9u3bAy1a6Kl86BCwc6e0zN0dGDLEYPERERERkXxkSfSHDRuGmzdvonv37nB3d4elpaXkvBACCxculONRRESUTRcuAOvWSctKlwbGjtVTOSIC+OYbaZmlpWbMv7W1wWIkIiIiIvnIkugfP34cf/31F6pWrZpunVWrVsnxKCIiyoaoKGDSJECIt2VmZsDs2YCtrZ4LfvpJd3z/hAmAl5dB4yQiIiIi+ciyGJ+Dg0OGST4A3L9/X45HERFRFgmhWWgvPFxaPmQI4OOj54KkJGD3bmlZixaaMf5EREREZDRkSfTbtGmDc+fOZVhnxIgRcjyKiIiy6OhR4NgxaVmtWkCvXulccPw48OKFtKxvX0OERkREREQGJMvQ/aFDh2LMmDFo1aoV3n//fZ1V94UQ2L17N5YvXy7H44iIKAsCAoABAzTz89VqwNERmD4dUKb3Fm/aBfj8/Tlkn4iIiMgIyZLo+/r6QqFQ4Pfff5fjdkREJAMLC2DwYKB+fWDqVGD4cMDFJZ3KN24Aly5Jy7p1M3SIRERERGQAsiT61tbW+Oijj9I9L4TArl275HgUERFlU9WqwI4dmsRfr9hYYMoUaVnRokDjxgaPjYiIiIjkJ0ui7+joiHVp925K4/Dhw3I8ioiIciDdJD8pSTOe/949afmHH2ZwERERERHlZ7Ik+ps3b860DhN9IqJ8JCICWLEC+P134PVr6bmKFYGePfMmLiIiIiJ6Z7Ik+k2bNs20jq+vrxyPIiKidOzZoxmmX6FCJhWFAMaOBS5f1j1nbw/MmwdYWRkkRiIiIiIyPFm218uK9tyHmYjIYK5dA+bOBXr3BjZu1Kyyn64TJ/Qn+QoFMHMmUKKEocIkIiIiolwgS49+aGhohueFEAgKCpLjUURElEZ8vGYtPbVa87F4MXDqlGZkvs5Wemq15kRavr7A0KFAjRq5EjMRERERGY4siX6ZMmWgUCjkuBUREWXT4sVA2vdba9fWk+QDwMGDwN270rJZs4BWrQwWHxERERHlLoNtr6dWq/H06VMEBwejePHiqFmzphyPIiKiVM6eBXbulJZVrgz07aun8oMHwNKl0jIvL6BFC0OFR0RERER5wODb6yUkJGDUqFH44IMP5HgUERG9ERWl2RkvNSsrYMYMwMwsTeW7d4EhQ4Dnz6XlQ4em0/VPRERERMZKlr/uzp07l+45KysrfPfdd5gyZYocjyIiojfmzwfCw6Vlw4cDHh5pKkZEAIMG6Sb5tWoB9eoZNEYiIiIiyn2yJPqlSpXK8LyNjQ1u3bolx6OIiAjA0aPAgQPSstq1ga5d9VT+7jtNsp9axYrAnDmalfaJiIiIyKTIMnQ/I0lJSfjuu+/g7Oxs6EcRERUIz54B33wjLStUCJg2Tc8o/BMngCNHpGVVq2pW8LO3N2CURERERJRXZEn0PT099ZYnJSUhPDwcycnJmDVrlhyPIiIq0BITgbFjgchIafm4cYCLS5rK0dHA3LnSMgcHYMECJvlEREREJkyWRD80NBSlS5fWKbexscH777+PLl26YPDgwXI8ioiowBJCk7dfuyYtb9o0nd3xNm3SnZc/ZgzAEVZEREREJk2WRL9YsWIICQmR41ZERJSOnTuBffukZSVKABMn6plqHxkJbN8uLatXD2jd2qAxEhEREVHek2UxvqlTp8pxGyIiSsezZ8CiRdIyGxtg4ULA0VHPBZs3A7Gxb4+VSmD0aC6+R0RERFQAyJLoDxo0KNM6Q4YMkeNRREQFUrFiQGCgZop9iunTgfLl9VR+9QrYsUNa1qqVnn33iIiIiMgUyZLoZ8XevXtz61FERCapTh1g40bA0xP49FOgSRM9leLigPHjdXvzP/001+IkIiIioryVozn6ZmZmcsdBRERZUKoUsGEDYGWl52RsLDBqFBAcLC1v1Qpwd8+V+IiIiIgo7+Uo0Tc3N0e9evWyXF8Igb///jsnjyIiojRsbPQUXr+uWZXv0SNpuYMDwF1PiIiIiAqUHCX6zs7OOH78eLauKV68eE4eRURUIMXEAHZ2Waz8v/8Bs2YBKpW03MEBWLEC4M9fIiIiogIlR3P058yZkyvXEBEVRCEhQPv2wO7dWaj8yy/AjBm6Sb6jI7ByJVCxokFiJCIiIqL8K0eJft++fXPlGiKigiYqSrMLXlQUMGcO8M03QFJSOpUPHwZmzgSEkJb7+gKbNgFeXgaPl4iIiIjyn1xbdZ+IiDKmVgOTJwOhoW/L9uzRrLSvIy4O+PZb3fLu3YEffwRKlDBYnERERESUv+Vojj4REclv+3bg1ClpWaVKQM+eeir/+qum2z+1/v01C+8pFAaLkYiIiIjyP/boExHlA7duAUuWSMucnYEFC/RspadWA1u3Ssvq1WOST0REREQAmOgTEeW5+Hjg66915+LPmgW4uuq54PRp6fh+QNPtzySfiIiIiMBEn4gozwUGalbaT613b6B27XQuSNubX64cUKuWQWIjIiIiIuMjS6JftWpVOW5DRFTg/PGH7jZ6lSppRuHrdf06EBQkLevenb35RERERKQlS6J/69YtjBs3DiFpu6SIiChdz54BM2ZIy6ytgdmzAQuLdC764QfpsbMz0Lq1QeIjIiIiIuMkS6Jva2uL6OhoVKtWDe3atcPBgwfluC0RkclSq4GpU4HISGn5mDGAh0c6F924obssf69egKWlQWIkIiIiIuMkS6Lv7e2N5cuXIzQ0FK1atcLYsWNRrlw5zJ8/HxEREXI8gojIpGzerDsCv0kToGPHdC4QAlixQlpWuDDQtatB4iMiIiIi4yVLon/69GkAgIODA4YNG4Zr165h9erVCAoKQtmyZdG/f3+cP39ejkcRERm9f/4Bli+Xlrm4AJMmZTDVftky4MwZaVmvXoCNjUFiJCIiIiLjZbBV9xs3box+/frBx8cH69evR+3atVGnTh1s3LgRSWn3kCIiKkD++096rFBottJzcEjngl27gPXrpWVOTuzNJyIiIiK9ZEn0J02apP3/y5cvMX/+fJQvXx7t2rXD2bNnUa9ePWzatAljx47Fxo0bUaFCBQSlHbNKRFRAtGsHbNgAlCmjOe7XD6hePZ3Kd+8CCxZIy5RKYPp0wNbWkGESERERkZEyl+Mma9euxQcffIBly5Zh586diIuLQ6FChfD5559jyJAhku33unbtikOHDuGzzz7D5cuX5Xg8EZHRqVhRM09/+3agZ890KgkBzJ0LJCdLyydNAt5/3+AxEhEREZFxkiXRf/LkCerUqQMhBHx8fDB48GD07t0b9vb2euu3atUKvXv3luPRRERGy9oa6Ns3gwoHDgAXLkjLevUCOnQwZFhEREREZORkSfSVSiW6dOmCIUOGICAgIMO6cXFx+Oijj2BmZibHo4mITFNUFBAYKC0rUQIYODBv4iEiIiIioyFLol+sWDHs2LEjS3XNzMzQpUsXDB48WI5HExHle9HRQDoDnHSFh2u6+pcsAV69kp776ivNOSIiIiKiDMiS6N+6dSvTOq9fv0ahQoVgaWmJPn36yPFYIqJ87/59oHdvzYj7fv2ADAczLVwIbN2q/1yTJkD9+gaJkYiIiIhMiyyr7qc3Fz81Ly8vOR5FRGQ0VCpgyhQgJgZYuRLo3x8IDU2n8q1b6Sf5trbAmDEGi5OIiIiITIssPfopfvvtN1y5cgWxsbE6516/fi3no4iI8r21a4Hr198eX78O7NoFjB6tp/LBg+nfaOBAwMVF9viIiIiIyDTJkui/fv0aLVu2xN9//w0hBBQKBYQQ2vMKhUKOxxARGY0bN4DVq6Vl7u7A0KF6KqvVwOHD+m9UsSLw8ceyx0dEREREpkuWofvTp09HSEgIlixZgiNHjsDJyQnHjx/H8ePHsXbtWpQpUwZLly6V41FERPleQoJmyL5K9bZMqQRmzkxnLb2LFzWL8KXm7g60bw8sWpTJxH4iIiIiIilZevT37t2L3bt347333gMAWFlZabfZCwgIQPXq1TF9+nSutE9EBcLSpcC9e9KyAQOAypXTueDQIelx+fLA9u2GCI2IiIiICgBZevQjIiK0ST4AqNVqyXlfX19cuHBBjkcREeVrQUHAtm3SMm9vTaKvV0ICcPSotKxVK4PERkREREQFgyyJvq2trSS5L1SoEJ48eaI9joyMxLNnz+R4FBFRvhUdDUybJi2ztARmzADM0xs/9dNPQFSUtKxlS0OER0REREQFhCyJvoeHBwIDA7XHFSpUwKhRo/D8+XM8e/YMgwcPhru7uxyPIiLKt+bN051q/8UXQNmybw6ePgXmztVk/g8favbdW7tWekGdOkDx4rkSLxERERGZJlnm6Ldt2xZjx47FyZMnsXfvXgwYMADdunXDjh07tHW++eYbOR5FRJQvHTsGHDggLatdG/joozcHQgDjxgHXrmmO//wTaNgQiIyUXsS1TIiIiIjoHcmS6A8bNgwtWrSAra0tAKBr166YNGkSli9fDgsLC/Tq1QtjxoyR41FERPlOeDgwe7a0rFAhYOpUzWr7ADT77aUk+QDw6hWwb5/0ooAAoEoVQ4ZKRERERAWALIn+xYsXAQDFUw03nTFjBmbMmCHH7YmI8i21WrOVXtqO+a++AlxdUxWkXVk/LYWCvflEREREJAtZ5ug3atQIH3zwAU6dOiXH7YiIjMajR8Ddu9KyJk2A1q1TFajVwG+/ZXyj7t012+oREREREb0jWRJ9CwsLXL16FR9++KEctyMiMhqlS2u206tTR3Ps6gpMmqTpoNcKDgZevNB/A4UCGDoUGD7c4LESERERUcEgy9B9d3d3lCxZMsM6oaGhXHmfiExSkSLAkiXA5s2Ary/g4JDqpBDAnj26F/n7aybwf/qpZtU+IiIiIiKZyJLot2vXDr/++ivatm2bbp26desiLCxMjscREeU7SiXQu3eaQpVKs0rfkSPS8hEjgJ49cys0IiIiIipgZEn0P/30UwwbNgwXL15Es2bN4ObmBqXy7awAIQRUKpUcjyIiMg5CaJL8tCvrW1kBLVrkTUxEREREVCDIkuhXrVoVCoUCf/75J6ZOnSrHLYmI8qWoKMDePs0cfH22b9dN8pVK4OuvARcXg8VHRERERCRLom9tbY2PPvoo3fNCCOzatUuORxER5Zn4eM2U+rJlNfm6ZC5+ahcvAoGB0jJLS2DOHCAgwOBxEhEREVHBJkui7+joiHXr1mVY5/Dhw3I8iogozyxcqNlK7+5d4Pp14JtvNIvv6fjxR82WeqnNmsUkn4iIiIhyhSzb623evDnTOkz0iciYHTsmXTz/yRNg/nzNVHyJly812+ml9tlnQJMmBo+RiIiIiAiQKdFv2rSp5Lhr1646dXz1dnsREeV/jx8DM2dKy6ytNWU6c/VPnJD25ltbA336GDpEIiIiIiItWRL9tE6fPm2I2xIR5Tq1Gpg0CYiOlpZ/9RXg4aHngmPHpMf162uSfSIiIiKiXCLLHH0iIlO1fj1w+bK0rGVLoH37NBUjIoBDh4AzZ6TlHLJPRERERLmMiT4RUTpu3ABWrZKWlSgBTJyYZsj+kydAr16a+fmpWVpqevSJiIiIiHKRQYbuC53VqYiIjEtcnGbIvkr1tkyp1Cyeb2eXpvLq1bpJPgC89x5ga2vQOImIiIiI0pIt0f/tt9/w+++/AwDOnTsn122JiPLEokVAaKi0rF8/PdvpvXwJHDig/yYffWSQ2IiIiIiIMiJbot+8eXPEx8fjiy++wIEDBxAXFyfXrYmIctWpU8BPP0nLfHw0u+Tp+PlnIDFRWla9umbvvdq1DRYjEREREVF6ZJujr1Ao0L59e7Rv3x43btzAvHnzoFQq0bhxY7z//vtyPYaIyKAiIoDp06Vl1taaIfvmaX9iRkYCO3dKy9q0AWbMMGiMREREREQZMchifM7Ozihbtixu3ryJHj16QAiBDz/8EP7+/vDx8YGfnx/MzMwM8WgiohwTQpPQR0RIy0eNAtzd3xwkJQFHjgAXLwL79+v25n/ySa7ESkRERESUHlkX4/vjjz9Qr149DBgwAIUKFUKPHj1w6dIlhISEYOLEibC3t8cPP/yA6tWrIyAgAEuXLpXz8URE7+TVK915+Q0aAJ06pSqYMweYPBnYs0f/kH1vb0OHSURERESUIdl69H/99Vd88MEHGD58OObPn69z3tnZGR07dkTHjh0BAE+fPsXDhw/lejwR0TsrXBjYvBlYvFgzIt/ZWZPTa7fSu30b2LdP/8UuLsCUKbkWKxERERFRemRL9JcvXw61Wo3Ro0dnqb6rqytcXV3lejwRkSysrYGvvgLq19ck+M7OqU6uX6//okqVgMBAoFix3AiRiIiIiChDsiX6Tk5OAAB7e3u5bklElGfq1UtT8PAh8GYLUYlZs4AmTQBLy1yJi4iIiIgoM7LN0R89ejQsLCywbds2uW6ZI9OmTYO/vz8aNWqk/UiZLpBi1apVqF69Ot5//320bdsWjx49yqNoichobNwIqNVvj21tgWPHgFatmOQTERERUb4iW49+9erVsXv3bgwePBgVK1ZEw4YN5bp1tn3//fdo1KiR3nN79uzB1KlTceXKFbi4uGDGjBlo164dzp8/D6VS1rUJiSifu39fMy/fwSGTis+eAf/7n7SsS5csXEhERERElPtkzWzbtm2LK1eu4OzZszh37pyct5bN7Nmz0adPH7i4uAAAhg8fjmvXruHAgQN5HBkR5aaICGDYMKBPH+DevUwqb92q2VYvhYUF0L27IcMjIiIiIsox2buwnZycMHbsWNSqVUvuW7+zly9f4sKFC5LYHB0d4eXlhSNHjuRhZESUmxITgbFjgcePgQcPgL59gb//TqdyVBSwe7e0rH17LrxHRERERPmWbEP385O1a9di2rRpSEpKQvny5TFlyhSUK1cOd+/eBQC4ublJ6ru5uWnP6ZOQkICEhATtcVRUFABArVZDnXrOrszUajWEEAZ9BtG7MMY2KgQwe7YCly+/LXv9Gli9GqhVS7zdSi/Fpk1QxMa+PVYqIXr2lM7Xp3zNGNspFTxsp5TfsY2SMTD1dpqd12Vyib67uzscHR2xdu1aKJVKzJgxAzVq1MD169cR++aPdSsrK8k1VlZW2nP6zJkzB9OnT9cpf/bsGeLj4+V9Aamo1WpERkZCCMH1AyhfMsY2unOnNfbutZOUubioMHp0JJ49E5Jy5ZMncFq/HopUw/YTAgLw2tISCA/PlXjp3RljO6WCh+2U8ju2UTIGpt5Oo6Ojs1xXIYQQmVczXiqVCiVLlsSAAQPQuXNn1KxZEydPnkT9+vW1dZo2bQo7Ozvs27dP7z309eiXLl0aL1++hIMBF+NSq9V49uwZihUrZpINlYyfsbXRP/8Exo5VIPVPPRsb4McfBby8dOsrxo0Djh9/W6BUQmzbBpQta/hgSTbG1k6pYGI7pfyObZSMgam306ioKBQuXBiRkZGZ5qEm16OflpmZGcqUKYP//vsPnp6eAIAnT55I6jx58gTNmzdP9x5WVlY6owAAQKlUGrwBKRSKXHkOUU4ZSxu9fRuYMgWSJF+hAGbNAipVSjteH8Dp09IkHwC6dYOiXDnDBkoGYSztlAo2tlPK79hGyRiYcjvNzmsyuVc/fPhwnbKwsDCULl0ahQsXRrVq1RAcHKw9FxUVhVu3bqFZs2a5GSYR5aKICGDkSCDtDJ2hQ4GAgDSVHzwA9uwBvvxSWu7oCHz+uUHjJCIiIiKSg8kl+vv27ZMMwV+9ejXCw8PRv39/AMCkSZOwYcMGPHv2DACwePFiVKlSBW3atMmTeInIsFQqYNw4IM1AHrRpo9laT+LQIaBTJ+Cbb3RvNGwYYMCpOkREREREcjG5ofuzZ8/G999/j8DAQCQkJMDS0hK///47vL29AQCdO3dGeHg4WrZsCWtraxQuXBj/+9//THJoBxEBq1YBFy9Ky3x9gUmTIF1hPyEBmDdP/03q1QM++MBQIRIRERERycrkEv3u3buje/fuGdYZNGgQBg0alEsREVFeCQoC1q2Tlrm5AfPnA5aWbwpiYoBz54Dz54HISN2bODgAkydDd989IiIiIqL8yeQSfSIiQDMvf9Ik6eJ7ZmbAt98Czs7QnNi/H1i0CHj1Sv9N/PyA0aOBYsVyI2QiIiIiIlkw0Scik7R0qSbZT+2LL4DKld8cLF+u292f2sKFQMOGBouPiIiIiMhQODGdiEzSyJFA6s003n8f0M7qCQkB1q9P/+ISJYD69Q0ZHhERERGRwbBHn4hMkr09MGcOULs2sHEjMG0aoF1zc+1a6Zj+tHr2TFWZiIiIiMi4MNEnIpOlUACdOwPt2wMWFm8KHzwADh+WVmzUCHB11SzPX78+0LVrbodKRERERCQbJvpEZPK0SX5yMjB7NqBWvz1pY6NZVd/RMU9iIyIiIiKSG8emElHBMW8eEBwsLfvwQyb5RERERGRSmOgTkdG7fVuz+N6LFxlUOnMG2L1bWla0KNC7t0FjIyIiIiLKbUz0icioxcQA48YBJ08Cn3wC/P23nkpCAKtWScssLTVb6Dk55UaYRERERES5hok+ERktIYBZs4DQUM1xRAQwbBjw119pKp49C1y7Ji0bMwbw8cmVOImIiIiIchMTfSIyWrt2Ab//Li3z8QHq1ElVIATwww/SSiVKAB06GDw+IiIiIqK8wESfiIzS9euakfepOTgAc+emWmUfAI4cAa5ckVYcMAAw56YjRERERGSamOgTkdGJigLGj9fslpfa9Omaznqt+Hhg0SJppRIlgDZtDB4jEREREVFeYaJPREZFrQamTAEeP5aW9+kDNGiQpvLWrcCTJ9KyESPSdPkTEREREZkWJvpEZFQ2btRdbK96dWDIkDQVExI0iX5qNWsCjRsbND4iIiIiorzGSapEZDQuXACWL5eWOTsD33wDmJm9Kbh6VbMU/3//6d5g5EhAoTB4nEREREREeYmJPhEZhRcvgAkTNEP3UyiVwOzZQNGibwqiojTJ/KtXujeoWxeoWDE3QiUiIiIiylMcuk9E+Z5KBXz9tSbZT23gQKBWrVQFK1fqT/IBoFcvQ4VHRERERJSvsEefiPK9RYuA4GBpWb16QL9+bw6Sk4FNm4CdO/XfwMsLqF3boDESEREREeUXTPSJKF9LTgbu35eWubgAM2Zohu4jKUmzkv7Zs/pv4OgITJ3KuflEREREVGBw6D4R5Wvm5kBgINC/v+bYwgL47jvAyelNhcBA/Un+oEHA4cPAb79xbj4RERERFSjs0SeifE+p1GyfV6kSEBcHVKny5sSBA/qH63fponlnQMn3MomIiIio4GGiT0RGo0mTVAe3bmm20UvN0hJYsAB4771cjYuIiIiIKD9hdxcRGZ/YWGDsWCAxUVr+9ddM8omIiIiowGOiT0T5yt9/p79DntbmzcCjR9KyDz8E2rY1VFhEREREREaDiT4R5Rs3bwKjRmm2vP/333QqPXgA/PCDtKxqVc2FRERERETERJ+I8ofISGDMGM1o/MePNWvpHTqUqkJCgiaZ79RJeqFCoRmyb2GRq/ESEREREeVXTPSJKM8JAUybBjx58rYsIQG4fDlVpTVrgD//1L24RQugfHlDh0hEREREZDSY6BNRntuyBTh5Ulrm759qNP7Ll8C2bboXmpkBAwcaOjwiIiIiIqPCRJ+I8tTVq8CSJdIyZ2dg7tw3o/HVauDbb4G4OGklKytg9mzA3T3XYiUiIiIiMgbmeR0AERVcUVHAhAmASvW2TKEAZs4EihYFkJys6dY/fVp6YevWmkpERERERKSDPfpElCf0zcsHgH79gDp13hxs3qyb5JuZAYMG5UaIRERERERGiYk+EeWJbdt019arXj3VlHshgJ9/llZQKDRDAEqWzJUYiYiIiIiMEYfuE1Guu34dWLxYWubkBMyapemwB6BZcv/RI2mlyZOBDh1yI0QiIiIiIqPFHn0iylXR0ZpO+eRkafmMGYCLy5uDxERNQWplygDt2+dGiERERERERo2JPhHlGiE0a+iFhUnL+/UD6tV7c3D3LtCtGxAaKq3Utq1m6D4REREREWWIQ/eJKNccOAAcOyYt8/dPtbbejRvAsGGa5fhTUyiANm1yI0QiIiIiIqPHHn0iyjUtWgBdu749dnQEvvnmzbz8+/f1J/kA8MkngKtrrsVJRERERGTM2KNPRLnGwgIYPx7w9ga++04zjN/FBUBkJPDll7pJfrlymnLtuH4iIiIiIsoME30iynUdOwINGgDOzm8K5s3TXWG/Th1g/nzAxibX4yMiIiIiMmYcuk9EeUKb5B8/Dhw6JD1ZqZIm+WeST0RERESUbezRJyKDUasBZUZvJ+7cCSxYIC2ztwcWLgRsbQ0aGxERERGRqWKPPhEZRFAQ0KOH7i55WqdPaybqq1TS8uHD30zcJyIiIiKinGCiT0SyCwvTLLp3+zbQuzdw6lSqkzt2AN27axbZS6t+fc0EfiIiIiIiyjEm+kQkq9hYYPTotwvov34NjBgBXLoETTf/vHnArVu6FwYEaHr4FYpcjJaIiIiIyPQw0Sci2ajVwLRpmp781Bo1Anx9AWzfrv9CW1tg9mzA0tLAERIRERERmT4m+kQkm9WrgWPHpGVly2qSf+XzcOCvv/Rf2Lw5YG1t8PiIiIiIiAoCrrpPRLI4dgz44Qdpmb09sGB2POzu3wXmz9d0+evTrp3hAyQiIiIiKiCY6BPRO7t9G5gyRVqmVAJzR4XDfUh34NWr9C9u2hTw9zdkeEREREREBQoTfSJ6J69eKTBmjALx8dLyESOAOsfn6k/ylUpgxgygRAmgalUuwEdEREREJCMm+kSUY8nJwKxZ9njyRFreoQPwSdNw4Pt05uSPGgW0amX4AImIiIiICiAm+kSUI0Jodsq7etUCFhZvy319gfHjAcXGfbpz8q2tNT35TZrkbrBERERERAUIV90nomwTAli0CPj5Z+mQexcXTfJvqUwG9u6VXtS6NfDnn0zyiYiIiIgMjIk+EWXbyZPA5s3SMktLYMECoEgRAAcOQGc8/yefaObmExERERGRQfGvbiLKtgYNNHl7CqUSmD4d8PaGptd+xgzpBVWrvjlJRERERESGxjn6RJRtCoVmPT1AYNMmYMoUgebNAHz7HbBrl+4Fn33GlfWJiIiIiHIJE30iyhGFQrOFXk3/52jw789A7XWayftpVa4MvPdersdHRERERFRQMdEnohxTqJJRc/dMKIKC9FdwdHyzBD9784mIiIiIcgvn6BNRhnbs0F1XDwAgBBSzZsHy1Cndc0olMHgwsG8f5+YTEREREeUyJvpElK716zXb5X32GfDoUaoTKhWweLFmdf20SpQA5s8HBgwA7OxyK1QiIiIiInqDQ/eJSK+tW4GlSzX/f/xYk+yvWAF4OEUCI0cCV65IL7CyAqZOBZo14zZ6RERERER5iIk+Een46Sdg4UJpWXg4cPnUa3jsHwzcuiU9qVQCc+dq9t0jIiIiIqI8xUSfiCT27dPk7GmN7vsCHXZ9Cjx4ICkXSiXEV19BwSSfiIiIiChfYKJPRFqHDgEzZ+qWfzE4GZ8c+FwnyUexYoj66is4BwTkToBERERERJQpJvpEBAD4809gyhRACGn5558DfYodAO7fl55wc4NYsQLJFha5FyQREREREWWKK2YRES5e1Gx3r1ZLy/v2BT5rdBtYt056okQJTVnJkrkWIxERERERZQ179IkKuNu3NYvoJyamLhX4xPcGhl5ZDMX687oXjRsHFCum+84AERERERHlOSb6RAVYWBgwbBjw+nWqQqFGe+zHqMszoFDouahCBaBevdwKkYiIiIiIsolD94kKqIgIYOhQ4MULaXlDuwuYhFn6k3xbW+Crr6D/JBERERER5Qfs0ScqoL7/Pu0i+gLVzK9hzusvYKZMMyS/cGHgww+Brl0BZ+dcjJKIiIiIiLKLiT5RATV2LPD4sWYhPgCoYBmKhXFDYWWWJK04apQmwbe0zP0giYiIiIgo2zh0n6iAsrcHli4FGtZNQEnVfSyJ7Q97s1hppYkTge7dmeQTERERERkR9ugTFWBWL59g3t3PEKGOQ1GLSOnJ0aOBzp3zJjAiIiIiIsoxJvpEJi4pCXj6FChVKlVhXBwwYwbw++8wA1DMIs1Fvr7AJ5/kYpRERERERCQXDt0nMmGRkZqV9T//PNXq+ioVMGkS8Pvv6V/YrVuuxEdERERERPJjok9koh4/BgYMAC5cAMLDNbviJT17BQwcCPzxR/oX+voCTZvmWpxERERERCQvDt0nMkG3bwNffAE8f/627PIlgcAOx/FV0iXdC3x8NNvn2dkBdesCFmnH8hMRERERkbFgok9kYs6f1+yIFxOTUiKA8HC4RN5B+1JbAJtUlZVKYMECoEGDPIiUiIiIiIgMgYk+kQn5/XdgyhTNAnwaAnj2DJ6vr2BJmXlwtYiQXrB8OVCzZm6HSUREREREBsREn8gECAFs3AgsXar5v6ZQDTx6hGqqYCzw+B4OZjHSi/r1Y5JPRERERGSCmOgTGbmYGGDaNOD48ZQSAURHAw8fool9MGaVXg5LZbLuhR075mKURERERESUW5joExmxu3eBMWOA0FAAEEBCIvDoIZCQgA8LH8VY141QKoTuhR99BJQqldvhEhERERFRLmCiT2SkfvsNmDEDiI9/U/DsGfD8ORQQGFpsF/oU2Q+FItUF48YBXl6aBfiqVMmLkImIiIiIKBcw0ScyQlevAhMnvjmIjQUehwGJiXAwi8HsEsvxXqGr0gu6d9dsn0dERERERCZPmdcBEFH2VakCNGkCIDFBM24/MRHe1vewucxk3STfxwf4/PM8iZOIiIiIiHIfe/SJjJBCqDGh6BpculcVEcIBHzj9ga9cN0gX3Rs1CqhXD3B31wzXJyIiIiKiAoGJPpGxEQJYuhSFd27E5OL+iFA5oqPTH2/P29gA+/cDjo55FyMREREREeUZJvpE+VREBLBsGVCxItCtGzQJ/o4dwJ49muX2ATSwv6R74ZQpTPKJiIiIiAowJvpE+YxKBezaBaxcCbx+DRQqBDRrBjjv3wQsXpz+hTNmaCpaWuZesERERERElO8w0SfKR65f1+Tr//33tux1tBrLPjmNyS/SSfKbNQO++gpwds6dIImIiIiIKF9jok+UDyQmAqtXA+vXA2o1AAggWQVEvgLCw/G70hZflCsEJ/PXby9ycNDssdesWd4ETURERERE+RITfaI8dusWMHUqcPuWGkhO1iT4YY802T+AVg5n8KXLdmmSX6sWsGgRh+kTEREREZEOJvpEeSQsTLO23vbtgOp1LPDwEZCcpD3vZRWKsW6bUM32X+mFXbsCo0cDFha5HDERERERERkDJvpEuUitBv7+G9i5Ezh1ChBJScDDh0BcnLaOGdT4rNjP6FtkP8wVqrcXFy8OzJ0LVK6cB5ETEREREZGxYKJPlEsSE4EePYCQu2rN3nmRkUBCgqROBasHmF5iFbysQ98WliwJDBgAtGkDmPNbloiIiIiIMsasgSg3JCXB0twMVcu8RsjxF5IefABQQqBvkf/hs2I/wyKlF79yZWDMGMDHBzAzy4OgiYiIiIjIGDHRJ5KZZtV8QKl8U7BvHzB/PhAbiwGJxfBr3DyooDlZSBmH9k5/4sPCR+Bu+VRTv3Bh4OOPgX79Ut2EiIiIiIgoa5joE8lArQaCg4EjR4A/f3mJb2rsRnV/NWBtDSxerK1X0vIZ2jmdxI04T3xY+AhaO56GjfLN8P1ly4CaNdl7T0RERERE74SJPlEOqVTA9evAb4fV+P2gCi8izTTz7h8/xh9hUagetFXvdWNdN8FKkQiFIlXh6NFAnTq5EzgREREREZk0JvpEWZSS2AcHAxcvApcvC8Q+jACeP9ecTOWP6OoY4bJVmsy/Ya1MBFq3BmrVAi5dAqpVA9q3z50XQUREREREJo+JPlE6Xr8G7h67hzvHQ/H3k7IIummP169UwMsIzdz5NCvmp/YwyQUPklzfzrtPMWQIEBAAlCunOe7QwYCvgIiIiIiICqICnej//PPPmD17NmxsbKBUKrF8+XJU5h7lBZNarVkJX6kEfvwROHwYZ2+7Y9yjLwAUBRD95iNjFa3vo6XD3wgodF6T5Lu7a+5ZvjzQvz/g5WXoV0JERERERAVcgU30g4KC0Lt3bwQHB6NixYrYuHEjWrZsiX/++Qf29vZ5HR7JICFe4MUL4NWDaESFvEDUhTsIu5+Ee9FFcD/KCc9jbJAQp8bcmrtR/eVRIDxccr2LRaEsPcfT6hGa2QehpcMZeFg90RQ2awbM/BmwsJD7ZREREREREWWowCb63377Ldq0aYOKFSsCAHr27ImvvvoKGzZswLBhw/I4Ohlcvqz5yEei48yx61wZ7bECAgKpJrGrVFAkJ0FtbgGVCkhOViAhTg3V6ziozSzwYc0QlDV/oOl9TzVs/mlMIYz8vQ3iXycjOSYBKnMrxAgbvE6wAIRIFUHJVP9XAXgNAIhV3AAKSZN8AHA1j9D7OspZPURN239Q3fYmqtn+C2fzKKBuXcC9IVCkCFClClC7NvRO0CciIiIiIjKwApvoHz16FJMmTdIeK5VK1KhRA0eOHDGNRP/sWeCHH/I6ConoxKJY/t/CHF9f/95mlC10RafcPNkRtx52eXNkDySlnBE6dfVJVOvvdS9q/go2ygQ4m0Whss1/qGt3DXXtrsLF4qWmwmefAVV6At7egLNz9l4MERERERGRgRTIRP/FixeIjIyEm5ubpNzNzQ3nzp3TqZ+QkICEVD3IUVFRAAC1Wg21Wm2wONVqNYQQOXuGWo381p+ctbQ7fSoo9N7DThn7TvdNEBZ676tQCJwYvQ+K8uUA/9qAV0/A3Bx6vxoGbAf52Tu1UaJcwnZKxoDtlPI7tlEyBqbeTrPzugpkoh8bq0kMraysJOVWVlbac6nNmTMH06dP1yl/9uwZ4uPjDRMkNF/IyMhICCGgVCqzda1NdDRsk5Iyr5iLVMlJECLn6X5ikkCyntekFEkwRxKShP7mbK5QwUEZAwezaDibRaGUWwLcnV6heOFY2Fgko6y9OaLLd0BinTpQxMZCoVIhqXJliMKFpTeK0D+UvyB7lzZKlFvYTskYsJ1Sfsc2SsbA1NtpdHTmi4OnKJCJvq2tLQBIeulTjlPOpTZhwgSMGjVKexwVFYXSpUujWLFicHBwMFicarUaCoUCxYoVy35DrVwZikaNDBFWjhWKt0FDq3AoFGmmzqemUkFpYQalErAwF7AwU8Pc1hJKpUCpcn4wc/GAIjISwtkZKFxYs6I9gGm3H8PcQgHzV89hbmUGqyoVULS0DYq4mMHOzhyKshW5MJ4BvFMbJcolbKdkDNhOKb9jGyVjYOrt1NraOst1C2SiX6RIETg6OuLJkyeS8idPnsDT01OnvpWVlU7vP6CZ12/oBqRQKHL2nDZtNB/5iDOAwHe6Q4D2f2mnJbR6p/vSu8hxGyXKRWynZAzYTim/YxslY2DK7TQ7r8n0Xn0WNWnSBMHBwdpjIQQuXLiAZs2a5WFURERERERERO+mwCb648ePx4EDB3Dr1i0AwJYtW2BmZoY+ffrkcWREREREREREOVcgh+4DQO3atbFhwwZ0794dNjY2UCqVOHz4MOzt7fM6NCIiIiIiIqIcK7CJPgB06tQJnTp1yuswiIiIiIiIiGRTYIfuExEREREREZkiJvpEREREREREJoSJPhEREREREZEJYaJPREREREREZEKY6BMRERERERGZECb6RERERERERCaEiT4RERERERGRCWGiT0RERERERGRCmOgTERERERERmRAm+kREREREREQmhIk+ERERERERkQlhok9ERERERERkQpjoExEREREREZkQJvpEREREREREJoSJPhEREREREZEJYaJPREREREREZEKY6BMRERERERGZEPO8DsAYCSEAAFFRUQZ9jlqtRnR0NKytraFU8j0Zyn/YRskYsJ2SMWA7pfyObZSMgam305T8MyUfzQgT/RyIjo4GAJQuXTqPIyEiIiIiIqKCJDo6Go6OjhnWUYisvB1AEmq1GmFhYbC3t4dCoTDYc6KiolC6dGk8ePAADg4OBnsOUU6xjZIxYDslY8B2Svkd2ygZA1Nvp0IIREdHo0SJEpmOWHYcF7IAAHOCSURBVGCPfg4olUqUKlUq157n4OBgkg2VTAfbKBkDtlMyBmynlN+xjZIxMOV2mllPfgrTm7hAREREREREVIAx0SciIiIiIiIyIUz08zErKytMnToVVlZWeR0KkV5so2QM2E7JGLCdUn7HNkrGgO30LS7GR0RERERERGRC2KNPREREREREZEKY6BMRERERERGZECb6RERERERERCaEiT4RERERERGRCWGiT0RERERERGRCmOgTERERERERmRAm+kREREREREQmxCQS/Z9//hk1a9ZEgwYNEBAQgOvXr6db98iRI+jQoQOaNGmC9957Dy1atMDFixdzMVoiIiIiIiIiwzH6RD8oKAi9e/fGli1bcPLkSQwYMAAtW7ZEdHS03vqDBg1C+/btcezYMZw5cwZ169ZF8+bNER4ensuRExEREREREcnP6BP9b7/9Fm3atEHFihUBAD179kRycjI2bNigt37NmjUxYMAA7fGXX36JFy9e4MiRI7kSLxEREREREZEhGX2if/ToUdSqVUt7rFQqUaNGjXQT9+3bt0OpfPuyra2tAQCJiYmGDZSIiIiIiIgoF5jndQDv4sWLF4iMjISbm5uk3M3NDefOncvSPc6cOQMbGxu0a9cu3ToJCQlISEjQHqvVakRERKBIkSJQKBQ5C56IiIiIiIgoi4QQiI6ORokSJSSd1/oYdaIfGxsLALCyspKUW1lZac9lRAiBWbNmYebMmShatGi69ebMmYPp06e/W7BERERERERE7+jBgwcoVapUhnWMOtG3tbUFAElve8pxyrmMTJs2DSVLlsTo0aMzrDdhwgSMGjVKexwZGQl3d3fcv38fDg4OOYg8a9RqNZ4/f46iRYtm+o6NMWi8obH2/z2q9kBzz+bo+0vfHN9va+etKG5fXHs85fgUnAw9CQAoalsUuz7cpT3X75d+uPfqHgCgevHqWNBiQY6fS2+ZWhsl08R2SsaA7ZTyO7ZRMgam3k6joqLg4eEBe3v7TOsadaJfpEgRODo64smTJ5LyJ0+ewNPTM8NrV61ahXPnzmHv3r2ZPsfKykpn1AAAODk5GTzRT0xMhJOTk0k0VDMbM+3/be1t4ejkKCnLLkcnRzjZO2mPbQrZaO9nYWsBJ6e35yxsLWCWoDlnZWclOUc5Z2ptlEwT2ykZA7ZTyu/YRskYmHo7TXlNWZk+bvSvvkmTJggODtYeCyFw4cIFNGvWLN1rtm3bhh07dmD37t2wtLTE3bt3uep+AaIA11UgIiIiIiLTZdQ9+gAwfvx4NGvWDLdu3YKXlxe2bNkCMzMz9OnTBwDQr18/JCcnY9OmTQCA/fv3Y/z48Vi/fj2uX78OADh//jweP36c4ZsDlP8IIfI6BCIiIiIionzH6BP92rVrY8OGDejevTtsbGygVCpx+PBh7byF+Ph4JCUlaev369cPz58/R5MmTST3mTp1aq7GTfLLaAiLgMhSPSIiIiIiImNn9Ik+AHTq1AmdOnXSe27btm2S42fPnuVGSJTHUif2aXHoPhERERERmTKjn6NPlCKjBJ7D/ImIiIiIqKBgok8FDofuExERERGRKWOiT0Yro+H5aXvwM6pLRERERERkSpjok8lI3VOfNrHn0H0iIiIiIioomOhTgcPF+IiIiIiIyJQx0SciIiIiIiIyIUz0yWjldDg+F+MjIiIiIiJTxkSfTBIX4yMiIiIiooKKiT6ZjIzm3qdO/DlHn4iIiIiITBkTfSoQUvfoc+g+ERERERGZMib6RERERERERCaEiT7lmXfd2z7tvPvUPfWck09ERERERAUVE30qEN71TQUiIiIiIiJjwUSfChwuxkdERERERKaMiT6ZjNQJfEbb63ExPiIiIiIiMmVM9MlkZDWBZ48+ERERERGZMib6RERERERERCaEiT4VCFyMj4iIiIiICgom+mSSMtpej3P0iYiIiIjIlDHRJ5OU0WJ8REREREREpoyJPhmt7AzHT12Xi/EREREREZEpY6JPREREREREZEKY6JPJYE89ERERERERE30yIVldZI+L8RERERERkSljok8FQurF+NjzT0REREREpoyJPhmtjFbST3tOshgfe/SJiIiIiMiEMdEnk5FRTz231yMiIiIiooKCiT6ZpOxsvUdERERERGRKmOgTERERERERmRAm+mS0stNrL5mjz8X4iIiIiIjIhDHRpzwj97z51IvsZXRvLsZHRERERESmjIk+FQhcjI+IiIiIiAoKJvpU4HDoPhERERERmTIm+mSSYhJjcO7RubwOg4iIiIiIKNcx0SejlXY4ftqe+sG/Dsb9V/c1dVMvxsc5+kREREREZMJMItH/+eefUbNmTTRo0AABAQG4fv16hvXVajUWLlwIGxsbnDhxIneCpDxx4PYBAJyjT0REREREBYd5XgfwroKCgtC7d28EBwejYsWK2LhxI1q2bIl//vkH9vb2OvVfvnyJrl27oly5coiPj8+DiMlQ9PXUp5RlZys+IiIiIiIiY2b0Pfrffvst2rRpg4oVKwIAevbsieTkZGzYsEFv/ZiYGHz77beYOHFiboZJeUTfwntcjI+IiIiIiEyZ0Sf6R48eRa1atbTHSqUSNWrUwJEjR/TWL1WqFGrWrJlb4VEe43x8IiIiIiIqaIx66P6LFy8QGRkJNzc3SbmbmxvOnZNvxfWEhAQkJCRoj6OiogBo5vqr1WrZnpOWWq2GEMKgz8grcrwunc+/ntH5aqH/a2SKn9O8YMptlEwH2ykZA7ZTyu/YRskYmHo7zc7rMupEPzY2FgBgZWUlKbeystKek8OcOXMwffp0nfJnz54ZdJ6/Wq1GZGQkhBBQKo1+8AWSkpK0/4+OjsaLFy8kZdn14sULFEoqpD1+HfNa537RUdEIDw9HQmKC9lxMTAzCw8Nz/Fx6y9TaKJkmtlMyBmynlN+xjZIxMPV2Gh0dneW6Rp3o29raAoCktz3lOOWcHCZMmIBRo0Zpj6OiolC6dGkUK1YMDg4Osj0nLbVaDYVCgWLFiplEQ7WwsND+397eHkWKFJGUZVeRIkXgUthFe1zIrpDO/RwcHODi4gILCwtYCAttPRcXF9C7M7U2SqaJ7ZSMAdsp5Xdso2QMTL2dWltbZ7muUSf6RYoUgaOjI548eSIpf/LkCTw9PWV7jpWVlc6oAUCzHoChG5BCociV5+S2lNf1LtJ+XvTdz1xprlNuip/PvGSqbZRMC9spGQO2U8rv2EbJGJhyO83OazL6V9+kSRMEBwdrj4UQuHDhApo1a5aHUVFuyMqWedrt9fRN4CciIiIiIjJBRp/ojx8/HgcOHMCtW7cAAFu2bIGZmRn69OkDAOjXrx969eqVlyESERERERER5RqjHroPALVr18aGDRvQvXt32NjYQKlU4vDhw7C3twcAxMfH6yzQ1rlzZ4SFhQEARowYAScnJxw9ehRmZma5Hj8ZlgJvevSz0PtPRERERERkCow+0QeATp06oVOnTnrPbdu2Tadsz549hg6JMpGXiXdK8k9ERERERGSKjH7oPlEKfQl8yhz9zMqIiIiIiIhMBRN9MlpZWWBPO3Sfi/EREREREVEBwUSfTJreHn0O3SciIiIiMkpqocahO4cQlxSX16Hka0z0yWRkNCSfi/ERERERERm3oEdB6LmnJyYdm4QtV7fkdTj5GhN9MlpXnl7JNIHXN3Sfc/SJiIiIiIzHnYg7+PLglxjy6xDceqHZVn3j5Y2ISojK48jyL5NYdZ8Kpm9OfgMLpQXaV2yfbh0m9URERERExik8Jhwrg1di/639UAu1trxi0YoYUWcEHKwc8jC6/M3giX5ISAjKli1r6MdQATX9j+naRF/vqvspPfocuk9ERERElK+8TnyNG89uID45HgnJCUhUJSJBpfk3LDoMu//ZjYTkBG19t0JuGFJrCFqVbwWlgoPTM2LwRL9Lly64cOGCoR9DpBd79ImIiIiI8he1UGPvzb1YfHYxXie+zrR+IctC6F+tPz6u8jEszSxzIULjl+1Ev0mTJtmqf+fOnew+gihHDJHUX3h8Abuu70IXny6oWaKm7PcnIiIiIipI/ov4D7NPzsaVp1cyrWuuNMeHPh/i0+qfwtHaMReiMx3ZTvTPnTuHmjWZ8JBx0LcYX3aG8X/+v88BAL/f/R3BnwfLGxwRERERkYElqZKw68Yu3HpxC128u6Cqa1VZ7y+EQFh0GG4+v4mnMU/h7uiOSkUroahtUUm9+OR4rL6wGpuubIJKrdKWtyjXAhWcK8DK3AqWZpawNLOElZnm/5VdKsPFzkXWeAuKbCf65cuXx/Hjx7Ncv1q1atl9BJFBpU76iYiIiIhM1eUnlzH75GzcfXkXALD/1n60rdAWX9T5QicRz4gQAvHJ8XgV/wqRCZG4/+o+bj6/qfl4cRPRCdE61xSxLYJKRSqhUtFKcC3kivWX1iMsOkx73t3RHRMbTOSoWQPJdqK/Y8cOg9YnklPKcP7UvfhcmI+IiIiI5JaoSkRwWDBO3DuBv0L/QpI6Cf6u/qhZoiZqlKgBz8Kesi0g9yzmGZLVyXAr5KZ3+mpUQhSWnF2Cn2/+rHPu19u/4vi94/i0+qc6c97VQo2bz2/i7MOzuPjkIp7FPtMk9/GRSFQlZivGF7EvcCr2FE49OCUptzCzQD//fujr35fz7Q0o24m+l5dXtur36dMHZ86cye5jiGShbyV+9ugTERERkRxik2LxV+hf2uQ+NilWcv74veM4fk8zGtrJ2gk1itdAhSIVUMiyEApZFoKdhR3sLO1QyLIQnKyd4GLnAnOlboqWpErCpSeXcOqBJnEOeRkCAHC2cUYVlyrwdfVFVZeq8C7mjT/v/4mFZxYiIi5Ce71PMR80KtMIm69sRlRCFGKTYrH47GLsvbkXQ2oNQVRCFM4+PItzYeeyvTd9Udui8C7qjUpFK6GEfQmEvArR9vanvVf14tUxscFElHEqk61nUPbJsur+48ePsXXrVty5cwcJCQmSc7dv35bjEUQ5ou3RZ3JPRERERDIRQuDgnYNYcGYBIuMjdc5bmlnCytxKMqT9VfwrHA05iqMhR9O9r1KhRDG7YnCzc0Nx++JwtXPF/cj7CHoUpPMmAgBExEXgz/t/4s/7fwLQ/O2bevSqrYUthtYaig8rfwilQonO3p2x4twK7Lm5B0IIhEaGYvyR8enGY2FmAUcrRzhZO8HRyhGO1pr/u9q5olLRSqhYtGK6UwCEEHj8+jFuPr+Je6/uwbOwJwI8ArgrVi5550T/4sWLaNy4MWxsbPDy5UsUL14cABAeHo64uDiUKlXqnYMkygp9vfcpOFyfiIiIKP+6/OQy1l9aj6quVdHXv6/B9kgXQuDWi1vYf2s//nrwF+ws7FC7ZG3ULVUX/m7+WRpKHh4Tjm9OfoO/Qv+SlDtYOaCBewM0KtMIdUvVhZW5FW6/uI3gsGCcf3weFx5fyHQrObVQ4+nrp3j6+ikuP72st45CoUBVl6qws7DDtWfXJG8mpP6bt0nZJhhTb4xkMTsnaydMaDABXXy6YN6pebj45KLk3vZW9qhVohbqlKyD2iVro5RDqRwn5gqFAiXsS6CEfYkcXU/v5p0T/YkTJ2LlypX4+OOPUa1aNVy8qGksarUas2fPhoWFxTsHSZQV+n4I6R26z6SfiIiIKN/Ye3Mv5v41F8nqZJwMPYmbz29iVpNZss7fjoiLwMHbB7H/9n7cfiEdcXzz+U1svLwRlmaWqF68OuqUrIPKLpVRwbkC7K3stfWEENh7cy++P/s9YhJjtOVNyzZFV5+uqFa8ms6w+4pFK6Ji0Yro4dsDaqHG7Re38TTmKWISYxCTFKP993XiazyPfY7Hrx/jcfRjvIp/JbmPk7UT6pWuh/dLv4+6pepqt5pTCzVCI0Nx9elVXA2/imvh12BrYYvefr3R0KNhup8PryJe+KH9Dzhy9wiCHgWhuH1x1ClZB97FvA32JgvlrndO9B8/foyPP/4YgDTRUv6/vfuOj6La2wD+bE3vPZCEhE5CJ6FJEZDeBMUuqFzkKgoqqChXUK+CgkhRBCvl2hBFQUSE0KQnhCYBQgkQCCGN9GTrvH/smyGzu0k2m4QUnu/9+LmZM2fOnA0nk/zmNLkc//nPfzBgwAC8/nr5w0GIapO14J/D+ImIiOhulV6Yjn1X96FEX4JBEYNqbOsyo2CERq+Bk8rJ5msMRgOWHFqC7//5XpK+M3knXvjjBXw05CO4ql2rVa/EjER8c+wb7LmyB0bBKDmnlCuhN+rFY61Bi0PXDuHQtUNiWpBbEFp6t0RL75Y4lX4KR64fEc/5OPtg9j2z0b9Zf5vqIpfJxcC/MiX6EqQVpCGtIA3uDu5o49vGagAul8nRzLMZmnk2w6jWo2yqRymZTIb7mt+H+5rfV6XrqGGodqCvVt9+02YwGKDT6SS9+FeuXKnuLYjsxh59IiIiupuVrqJeOo87KStJPPfJkU/weIfHMbHjRLioXSTXZRVl4ZczvyA2ORYKuQIhbiHwlHsiMjcSYZ5h4hD489nnkZSVhAvZF1CiL0HHgI6YEDkBA8IHQKUof2RvniYPs3fMxuHrh8W0wc0H4++rf6NYV4yjN45iyuYpWDZsWZW2gSt16uYpfJnwpcWK7wDQPqA9RrUahUERg6A36nHk+hEcvnYYh68fRnphuiTvjXxTD3vpHPhSo1uPxoweM+Du4F7lutnCUekoBvBE9qh2oC+Xy3Hs2DF07twZbdq0wcsvv4x33nkHMpkMCxYsgJOT7W/1iGqatcX42KNPREREDUFqfirWn16P2ORYOCgc0Ma3jbi6eWvf1uX2dhfrinHk+hHsvbIX+1L2Iasoy2o+rUGLr499jY1nN+JfXf6FcW3HITEjET/+8yNik2Mlvd3nMs+ZOvQuVjwt98TNEzhx8wS8nbwxru04jGs7Dv4u/jAKRhRoC3Cr+BbSCtLwwf4PcDX3KgBTz/rr97yOsW3G4nT6abz454vILclFUlYSnv7taXwy/BOEeoRK7mMUjBAEAQIE8f8B4EzGGXyR8IWkVx4wrQw/qtUojGw1EmGeYZJzQ1sMxdAWQyEIAi7nXMaxtGNIykoSX2CUXQQv0DUQb/Z5Ez1Delb4fSCqa9UO9MeMGYMBAwbg8OHDePXVV9GnTx+sWLFCPL9mzZrq3oLIJlyMj4iIiBo6QRAQnxqPH/75AXuv7pX8DXM55zL+vPCneOzt5A1fZ1/xPy9HL5zPNi3+Vt6e5+382uGe0HtQqC3E+sT10Bl0uFV8Cx/u/xCfxn0qmXsOQBwubj7s3VwT9yZQyBRi8J5dnI0vE77E18e+hqejJ3JKcqyW4enoiYX3LUTnoM4AgEj/SHw1+itM+2Ma0grSkJqfiic2PgEfJx+U6EvE/2zd0z3QNRBPd34aI1uNrHTOv0wmQ7hXOMK9wsU0o2DEjfwbSMpKglEwomdITzirnG26N1FdqnagP3v2bMyePVs8PnLkCL7//ntotVqMGjUKffuWvwgEUW1jgE9EREQ1oVhXjEUHFiE1PxVPdX4KMU1irOZLvpWM1cdXw9PRE491eKzcOfAnb57EpnObkFOSA61BC51BB61Bi6ziLFzLuybJWzoEXmfQSdKzi7ORXZwtGY5vzkHpgO5NuqNPaB/cE3oP/Fz8xHMPRT2ET458gr8u/gUAkiDf09ET97e5H+PbjYePkw+u513H8cvHUSAvwLX8axAEAS28W6CVTyu08G4BF7ULBEFAwo0ErD+9Hrsu74JRMMIoGCX7uZfVwrsFFg9ZbLEqezPPZvh6zNd4YesLuJh90bRgndkLiMoEuwXjmc7PYHjL4RVOIaiMXCZHE/cmaOLexO4yiOpCtQN9c1FRUXjvvfdqulhqhO5EEG7tzTGDfyIiorubwWiAQTDYvKp7ka4I07dOF7cii0uNw5jWYzCjxwxxVXaNXoOvjn2FtSfWikPe1yeux7g24zCp0yT4ufiJgfBXx76SLOpWHn8XfzzQ7gGMazsOLioXXLp1CWczz+JM5hmcyzqHmwU3kVWcBYPRYHFdn9A+6BPWB9HB0XBQOlgtP9gtGO8PfB+PtX8MSw8vRcKNBLTza4eHIh/Cfc3vk3x/Qj1C4RjkCH9/f8jl1ldll8lk6BrcFV2DuyK9MB2/nPkFf174E1qDFl5OXvB29IaXkxc8HT0R5hGGYS2Hlds77u/ijy9GfYH39r6H/Sn7oVKo4Kh0FP9zUDiIK9zLIBOnazoqHTEoYhCGtxxusQI+0d2k1lv/wIEDERsbW9u3IbJ5hX3O0SciIro75ZTk4Jtj3+DnMz9DY9DA38UfTd2aoql7U4R4hKBvWF9EeEVIrinQFuCFrS/g1M1TkvTfzv2GA9cOYPY9s6GSq7Bg/wJcz7suyaMz6PDj6R+x8exGjGk9Buezz+N42vEK6yiXydEhoAMeinwI94bfKwlWS1dsH4MxYppRMCJPk4esoixkFWfBy9ELLbxbVGnv80j/SHw+6nMU6YpqbFi6v4s/pnabiqndptpdhruDOz6474MaqQ/R3abagf4777xT4fkzZ85U9xZENYo9+kRERHeXQm0hvj31Lf538n+ShdVuFtzEzYKbOHrjKADTKvR9w/ri6c5PI8o/CnmaPEz7YxoSMxIBmALPh6MeFsvJKMzAy9teltxLKVfiyY5PwigY8cM/P4jzyX9K/EmSr6l7Uzzd+Wn0CukFtUINlVwFtUINuUxepSBdLpPD09ETno6eaI7m9n6LAIBzz4kakWoH+vPmzavwfFUeVEQ1jUE9ERHR3al0+7c9V/bgx9M/IrckVzynVqjR3Ls5ruddR54mT3Jd6TZ00cHRyNXkivPfPR09sWLECrTyaYXRrUfj/b/fx4GUA5JruwR1wex7ZouLuT3a/lGsO7EO6xPXQ6PXAADCvcLxdKenMbj5YCjkitr8FhDRXazagX7Hjh1x7NgxSVphYSESExPxxRdfYNq0adW9BZHdOHSfiIioccouzsbxtOMo0BZArVCL/2n0Ghy6dgj7UvYhozBDco1CrsCY1mMwuctkcZG8fE0+ruVdQ8KNBHx76ltxH/W41DjxOm8nb6wcuVIc1h/oGoilQ5di64WtWHJoCWQyGaZFT8PIViMlnVzeTt6Y3mM6Hu/wOLZe2Iqm7k3RN6yvuJI9EVFtqXagv3z5cos0FxcXREdHo3Pnzhg1ahS2bt1a3dtQI1Mbwba17fUq2wqGiIiI6j9BEHCj4AZO3TyFozeOIuFGAi7nXLb5eplMhiHNh+DZrs8ixCNEcs7NwQ1t/dqirV9bPBj5ILae34rVJ1YjJTcFgGn/9ZUjV6KZZzOLMoe3HI6hLYYCQIXBu4+zDx7v8LjN9SUiqq5qB/r33HNP+YUrlbh8+XJ1b0FUo+wdzi8IAqeiEBER3QEl+hIcTDmIU+mncDbzLM5mnrUYYl8ZtUKN6OBo9AkzbSsX6Bpo0zVj2ozBqNajsDN5J85nncf9be+v8Fr2zhNRfVTtQP/q1asWaYIgIDs7G+vXry93+w2iO8FaUG/vaAIBgtVRA0RERGSpRF+CMxln8E/6P7h46yJyS3KRq8lFTkkO8rX58HP2Q/cm3RHTJAadgzpDrVAjPjUeW89vRWxyrGTRPHMKuQLt/NqhS2AXNHFvAq1BK/5nFIxo59cO3YK7wVHpaFfd5TI5BkUMwqCIQfZ+fCKiOlXtQL9Zs2bWtzUTBLi5ueHbb7+t7i2I7Mb5+ERERLbTGrRQyVXljmA7l3kOV3KvoE9oHzipnCzO52vysfr4ahy6fgjns85XOIXuVvEtJGUlYd3JdVApVHBVu+JW8S2reb2dvNHW1zS8vnNgZ7QPaM8V4omIKlDtQD8kJMRiiz2FQoGAgADExMTAw8Ojurcgskl5L5xsSbOFUTByeB4RETVKgiBg3cl1+Cz+M3g5emFYi2EY3nI4mns3h8FowO7Lu/Hdqe9w4uYJAKbF6Gb2mol+Yf3E37/7ru7D+3+/Ly5mVx5XtStc1C5IL0wXfyfrDDpJkO+idsGg8EHoG9YXbf3aws/Zj9PniIiqoNqB/qhRozBx4sSaqAtRtVgbVl+dVffNXwhwqz4iIqorRboi/Hr2V7ioXNAnrA+8nbyrXEahthApeSlo5dNK8uJab9Tjg30fYOPZjQCA9MJ0rDmxBmtOrEErn1bI0+QhrSBNUlZaQRpm/jUTvUN6Y2q3qfj+n+/xx/k/xPMymQwRXhFo798eUf5RaOfXDr7OvnB3cIdSbvrzM6ckB/Gp8Th87TAOXz+M7OJsxDSJwfCWw9EntA8clA72fKuIiAg1EOh/8sknFZ7//vvv8cgjj1T3NkR2qU5wbv5CgNMAiIioLlzIvoBXt7+Kq7mmdZHkMjk6BnTEveH3YkD4AJsWmduZvBPv/f0ecktyEeIRgkeiHsHIViMhCAJe3/E6Dl47KOaVy+TikPvSPeRLRXhFwMfJR9x6bn/KfuxP2S/J07NpT7zZ981K6+Xp6Ml58EREtaTagX5lFi5cyECf6ozVHv1qrLpPRER0pwiCgE3nNuGD/R9Aa9CK6UbBiGNpx3As7RgWH1yMzoGdMazlMAwMHwgPR+mUyQJtARbuX4gt57eIaSm5Kfhw/4dYEbcCXk5e4jZyKoUK8/rNQ0yTGGy/tB1/nP8D/6T/AwC4J/QePNr+UUQHRwMwvTj46OBHkmH6rmpXvNLzFYu95ImI6M6rcqAvl8v58KZ6ydY5+rYyX0CoogWFiIio4cksysQrf72CMxlnANzeXaVH0x6Y13+eXcPjbXWr+BZWxq+E1qCFn4sf/Jz9oNQo4VXshSJ9EQq0BTiedhx/XfxLvKa1b2v0bNoTuy7vwpWcK2J6adD/4f4P0d6/PQJcA+Dr7AtPR09sSNwgGXYf6hEqjgwo0BagQFsAAHB3cMdHgz9C56DOAIAJkRMwIXICMgozoJArLL4XAyMGomdIT3xx9AtsStqEbkHdMLPXTPi5+NXa94yIiGxX5UA/ICAAU6dOFY8NBgO++OILREVFoX379vDw8EBOTg5OnjyJuLg4vPDCCzVaYWs2btyI9957D05OTpDL5VixYgUiIyPLzb9v3z7MnDkTDg4O0Gg0WLhwIfr06VPr9aQ7r0bn6HPoPhFRo5GnycPzfzyPi9kXJekCBBxIOYDJmybjsxGfIcA1oErlZhZlIjEjEWcyzuBc1jkEuQZheo/pUCvUt+8hCHhz55s4cv2I5FqdTgeVSmW13AfaPYCXe74MtUKNaTHTkHwrGbHJsfjzwp+4nHMZgGmu/bG0Y1avd1G74NVer2J4y+G4kH0B3//zPbZe2AqdQYcm7k2wbOgyhHmGWVxXUeDurHLG9B7TMb3H9Mq+LUREdIdVOdCPiorC3LlzxeM5c+Zg1apVGD16tEXe3377DTt27KheDStx5MgRPPnkk4iPj0fr1q2xdu1aDBkyBGfOnIGbm5tF/itXrmDEiBH47bff0L9/f+zZswcjR47EyZMnERZm+QuOGh9be/kt5uhz6D4RUaNQpCvC9D+ni0G+h6MHmrg1AQCk5qcipyQHV3Ov4plNz+CzEZ8hxCMEgGll+JySHPg4+0gWs0svTMfvSb/j96Tfxd7ysrQGLd7s+6Z4vOncJosgvzzOKmfM6TsHg5sPlqSHe4VjstdkPNP5GZzLOoc/L/yJvy7+ZXXF+65BXTGv/zwEuQUBAFr6tMRb/d7CtJhp+Cf9H3QL7sat6oiIGpkqB/rbt2+XHO/YsQP//e9/reYdM2ZMuedqygcffIDhw4ejdevWAIDHH38cr776KtasWYNp06ZZ5F+2bBnatGmD/v37AwD69euH1q1bY/ny5Vi0aFGt1pXuPGvD7dmjT0R099IatJj11yycunkKgGl/9q9GfyUG8zfyb+C5P55DSm4K0grSMHnzZPRo0gPns8/j0q1L0Bv1cFQ6ItwrHBGeEcgpycHBawcrnN618exGdAzsiJGtRiK9MB2LDy0Wz83tNxc+zj5Iy0/DxbSL8PL0gruDO1zVrnBVu6JDQAd4OnqWW7ZMJkMb3zZo49sGM3rMQJGuCJlFmcgsykRGYQa8nLzQLbib1e1hvZ280Tesr53fSSIiqs+qvRjfpUuXoNfroVRaFqXVanHlyhUrV9Wc2NhYzJkzRzyWy+Xo2rUrduzYYTXQ37Fjh8Uw/ejoaLtGHmi1Wmi1Wot0uVwu+X5Yy1NKJpNJhumVzWs0GsV7lK6NUDavTqcrt5e5tvICgFqttiuvYBDEvHqdHlqtFkb97T+M5Eq51bxW66yQiXPy9Xo9jEYj9Dq9pDwA0Gml9RMMAgw6Q7n/JiqV6na5Bml5JZoSqKG2mtdgMMBgMJRbX6VSCblcXm/yGo1G6PX6cvMqFAooFIpK8xqNRsk9a6pc87yCIECn09VI3rI/n7WVF6j4576mnhGV5W1oz4jSn+WayCv5WdbrJc/SyvLaWm5lP3N8Rty5vLY+I3QGHd7Y8QYOXjGtMO+qdsXHgz5GgFOA+LPl5+SHL0d9ief+eA4Xsi4gIy8Dm/M2S8or0hfh9I3TSExLhEwhE+sgGAR0CuiEqIAotPVti6ziLCw+aArq39/zPlr7tMaKuBUo1BbCqDdiRMsRGBI+xPR5/YxId02Hv78/lEql3c8IpaBEoFMgAp0CAR9Tml6nt5qXz4iq/9zfzc+Iss/P+vBzz78j+HeEeV69Xl/h7/zG8Iyo6N/PXLUD/cjISIwbNw4ffvgh2rRpI6YnJibitddeQ1RUVHVvUa6srCzk5uYiMFC6fUtgYCDi4uKsXnPp0iU8+OCDFvkvXbpU7n00Gg00Go14nJeXBwBYtGgRHBws93ht0aIFHnvsMfH4ww8/LPcHOywsDJMmTRKPP/74YxQVFQEwPRAKCwvh4uICmUyGoKAgTJkyRcz7ySefICcnx2q5fn5+eO6558TjVatWISMjw2peT09PTJ9+e37dV199hRs3bljN6+zsjFmzZonH69atK/dljkqlwhtvvCEeZ8dnQ5Nu+j5uS9iGi94XkXbm9gJBwaOCxa9vHbuFkhslVssFgMBhgZApTQ1/06ZNOHHiBA5fP4y0m9J9frcc34LHIx8Xj/MS83B4/2G8F/ee1XKnT58OT09PAMCO7TuQtvV2eYuuL5Ls6fvvf/8b/v7+AIA9e/Zgz5495dZ38uTJaNLENCz0wIEDFb5YmjhxIpo1awYAiIuLw9atW8vN+8gjj6BVq1YAgBMnTuC3334rN+8DDzwgrl1x+vRpbNiwody8Y8aMQadOnQAASUlJ+P77763mEwQBPXr0QECAaQ7r5cuXsWbNmnLLHTRoEHr37g0AuH79Or788sty8/br108ceZOeno7PPvus3Lw9e/bE4MGmYa05OTlYunRpuXm7deuGESNGAAAKCwsrHMnTsWNHjB07FoDpF+P8+fPLzdu2bVtMmDBBPH7vPettDKi5Z4S5hv6M+P7773HhwgWreQFIpo1t2LABZ86cKTfv7NmzxV/omzdvxoEDB8RnqbmZM2fCxcUFALB161bEx8eXW27ZZ8T27dtx8ODBcvPyGWEybNgwxMTEAKjZZ0SLLi3g1cYL+dp8pNxIwZ6f9qC1T2u4OVhO2+vZsyf6D+yP2bGzsevsLqTHpkMhUyC6ZTTWp6yX5C19RqwasQr/3vhv7Pne9O8mgwwejh5wVbsiT5OHPE0enEOc4dnJE/4u/hgWPgzJm5LhdtMNucjFIRwCAHhe9cTZzLNwDHLEs+pnkacx/Q2Ruz0Xuus6vLfP9Kwo+zu/ZcuWfEbgzj0jSv+OKA+fESbjxo2Dv78/jEYjzpw5U++fEfw7wuRue0acP39eEj+V1RieEWVj0spUO9BfunQpBg4ciMjISDg5OcHLywu3bt1CcXExfHx8sGvXrureolyljdQ82HZwcCi3ARcVFVUpPwDMnz8fb7/9tkV6YWGh1TeJeXl5SE+/PUeuoKCg3DeO+fn5FnmLi4sBmH7pl5SYgl2ZTGaRNz8/H4WFhVbLdXR0tDmvQqGwOa/RaLQ5r1KplOQt+9ZKq9WiqKhI8har7AOqsjdcOp0OcsH0li43NxeFhYXQarQW12g0GmRkZIhl6/V66HS6cuuckZEhvinLyc2RlFdQWAC98va/Y2Zmpvh1Tk5OuWWW5i19k3nr1q0K82ZlZcHZ2dnmvKXf4+zs7ArzZmdn25U3Kyur3LyCIIjtUi6XV5i39POUlpuZmVlh3pycHLvylraH8uTm5op5i4qKbM6r1WorzGv+c1+VvPY+IyrL29CeEXl5eRV+36qat/QXdG5uruRZai4jI0Msq7L2I3lG2PBzX+pufUaU1rFs3tz8XBToCuDp4Gm13NS0VCjlygp/7k9mnMT/cv4H12uuAAB9vh6Z1zNxPvM8RoSPgEKukOTPyM7AtE3TEJcWB4POAAhAnyZ94CZzs7hH2Z/7udFz8fbet+GocISng6ekXL1RD/9wf/Tu0xstPVtCr9NjmX4ZCvXS8jp6dcSN3BsoMhQhqyBLTO/m3w16jR56jelnv+zvfD4jTO7kM6Kyn3s+I0zn1Wo1BEGo1WcE/44w4d8Rlect7xlR3u/8xvCMqEqgLxNqYIWxnJwcLF68GAcOHEBqaiqCg4PRu3dvvPTSS+Ibi9qQlZUFX19frFu3Do8/frvX9plnnkFcXBxOnjxpcY2bmxtee+01yXD/d999FwsXLhR76s1Z69EPCQnBzZs34e7ubpG/JofuZ2RkwM/Pr1EM3Y9eFS3mfaLDE7gv4j48+euT4nl7h+4fmHQARqMRn8Z9im9PfSvJ91Snp/Bc9+fQ/avuYrk9m/TEosG3375mF2djyaElaOLeBNN6TBPLzSvOw4A1A8R8Wx7ZAi8nL/G4oQ25q62h+9nZ2QgMDIRcLueQOw65A1D/huVqtVrcvHlTfJZWlPduHpZ7J4buH0o5hDmxc5BTkoOxrcdiVq9Z4vcotyQXs3fNxsWci3gu+jmMbzPearkbz27EwgMLIZPLIJNLh80DwJSuUzCp4yQxf7GuGK/tfA0JNxMAAA4KByzovwDRTaKt1rc2nhGp+al4evPTKNCbtrK7L+I+zL1nriRP2d/51Rm6z2eEbXnr67Dc8tSHZ0TpC30/P9NODHU9HJ9/R/AZYZ63dOh+2fiporwN8RmRl5eHgIAA5ObmWo1Dy6p2jz5gGo7xzjvv1ERRVeLj4wMPDw+kpUmHa6elpSEiIsLqNREREVXKD5h6/K0N0Xd0dISjo2Ol9bQlj7W8RqMRDg4OcHR0tPrHqbU6lac+5JUpZJDB1FhVapXpcyktP5d53sqU/tAqVUqL8lRqlfjgLi1XoVJIvs9L/16KnSk7AQAxoTHoGdITAKBQKiTlOTg6lPtvKZfLy90Sqb7mtbauRlXzGo1G8Y+E0v9qolxryv47NoS89v7c12Te+vBzX5W8ZX8B13Teip6l9pZbX36W6/MzopRRMGL18dVYGb8SRsEIuVKOTRc3Idw3HE90fAIavQaz98zGyQzTC/qFBxaiRF+CiZ0mSsrZe2UvPo77WHw2Pxz1MNr5tYNRMOKdPe/AKBix9p+1GN1uNILdgk3l7pgtBvnOKmcsHbpU3CveFjXxjIhwjMCCwQvw6vZXEeAagFm9Z1n8LFf0O5/PCJPafEbURt768rNcU3mNRiNkMlmt/r7n3xG38e+IqudVq9VQKpU2/c5vqM+IOzpHvzIDBw5EbGxsrZU/YMAAyTwIQRCQkJCAN99802r+gQMH4sCBA5K0+Ph4DBo0qNbqSHXHllX3Y5Nvt8+TN0+KgT631yMiqr4iXRHm7JyDvVf2WpxbdmQZmro3xZbzW3DypnQU3vIjy1GsL8azXZ9Fka4IR28cxezY2eJz/fEOj2NGjxli/qSsJHx36jtoDVp8uP9DfHjfh5i1fRbiU01/I7iqXbF82HK0D2hfex+2Aj2a9sDOiTshl8mtroBPRERUk+wK9Ddv3gwPDw/07du30p78ihY5qAmvv/46Bg0ahKSkJLRq1QrffvstFAoFJk409QI89dRT0Ov1WLduHQDTAghfffUV9u7di759++Lvv//GmTNnsH79+opuQ3cJvfH2EDDzwL6irZOIiBqC3JJc3Cq5hWaezapdliAISM5Jhq+zL9wdrA8fzNfk44WtL+Cf9H8AmIZvTukyBUbBiC8SvoAgCJi1/faiS84qZ4xsNRLrT5t+J3+Z8CV+OfMLsouzJeUObTEUL3Z/UZL2bNdnsf3SdmQUZmDf1X2Y9OskJGUlieV+MvwTRPnX3gLBtlDKa71/hYiICICdgf6TTz6JZs2a4dixY5g3b16Fea0tfFSTYmJisGbNGjz66KNwcnKCXC7Htm3b4OZmWnW3pKREMh8mLCwMv//+O2bNmgW1Wg2NRoMtW7YgLCysVutJtc/aPvdV7YXXGW+3FYsefSvlExE1FJlFmXhi4xPIKMzArF6z8FDUQ3aXlafJw3/3/hc7k3fCQemA8W3HY2LHifBx9hHz5Jbk4vk/nsfZzLMAAHcHd/x3wH/RK6QXBEHA1dyr2HZxm5hfIVdg4X0L0b1pd4R6hGLRAdNaKuZBfkyTGMztN9eiV9xF7YKXe7yM2bGzAUAM8h2Vjlg6dGmdB/lERER3kl2B/l9//SVuIdCxY0ccO3as3LydO9s+D85e999/P+6//36r56xt59GnTx8cOnSotqtF9YAtwb9cJhd763UGXbn5OHSfiBqyjw58hIxC09ZHy44sQ5+wPgh2C67kKksJNxIwZ+ccpBeaVi/W6DX47tR32JC4AUNbDEWwWzA8HT2xIXEDLmSbtkLzcvLCiuEr0NKnJQBTJ8Dc/nORWpCKUzdPAQDm9puL7k1NC6c+HPUwnFXO+GD/B1DJVYjwikBzr+aI8o/CsJbDoFJYn9M4KGIQfjv3Gw5dM/2OVyvUWDxkcZXm5BMRETUGdgX60dG3V6otux+hNZWdJ6pNgmC5er958K+UK6E1mBa2kAzdZ48+ETUSB1IOYPul7eKxRq/Bwv0LsXjIYshkMpToS3Do2iEU6YqgkqugUqgQ7BaMFt4txJ7zC9kXsP70evx69lfx5air2hVag1b8b9O5TRb39nX2xWcjPkO4V7gkXa1QY+nQpfjhnx/QxrcN+ob1lZwf3Xo0RrYaCRlkNo8OlMlkeP2e1/HMpmdQoi/B+wPeR0yTmCp9r4iIiBqDak8WGzt2rNX0nJwceHp6lnueqKZZ63EX/v9/FeUrG+hLhu5zjj4RNQIl+hIs2LdAPFYr1NAatPj76t/Yc2UP/F38MWfnHFzNvWpxravaFZ0CO6FAW4Djaccl57oEdcF/B/wXcpkca0+sxYbEDeKztFSAawBWjliJEI8Qq3Vzd3DHlK5Tyq27PYvWNXVvit8f+R16ox5OKqcqX09ERNQYVDvQ//vvv/HNN99g8ODBePjhh3HhwgUMHjwYV65cQZcuXbBp0yYEBQXVRF2JqsyWHn2VQgX8f3xftkefgT0RNQZfJXyF1PxUAEDXoK4Y32483oh9AwDwzp53UKgrhMFofR/fAm0B9l3dJ0lzUjnhqU5PYVKnSWIg/nLPl/GvLv9Cck4yckpykFOSA41eg4ERA+Ht5F2Ln846lUJV7vB+IiKiu0G1A/1PPvkEgGmuPgC8/PLLyM3NxaJFi7B//3688cYb+Oabb6p7GyK7CBAqDdjLroJc0dB9Bv5E1NDEXorF2pNrAZiedbP7zEaYRxg2n9uMg9cOIk+TJ+Zt59cOI1uNhN6oR4m+BGczzyLhRgJySnIAABFeEXig3QMY3nI4XNWuFvdyc3BDh4AOd+RzERERUcWqHeifO3cOcXFxUKlUyMrKwtatW7Fo0SJMnz4dzz//PLp27VoT9SSqVHkL71U2t14lv93rUzbQt1YWEVF9kZqfij8v/AkACPUIRahHKELcQ+CkcoJRMGJF3AqsPr5azD+p0yRxW71Xe7+KhzY8BK1BC5lMhqc6PYUpXadYbP8mCAIu51yGUTAiwiui1nfSISIioppR7UBfqVRCpTIFSps3b4ZcLsfjjz8OAFCr1VCr1dW9BZHdbFl1v+wftmVX3TfvwedifERU04p0RbiWdw3NPJtBrVBbnEvJTUFKXgqyirLQwrsFOgZ2hFwmx4bEDVh+ZDmKdcUWZfq7+MNJ5YQrOVfEtBEtR2Byl8nicYhHCBbetxDbL23HmNZjyl2VXiaTWSyiR0RERPVftQN9g8GAjIwM+Pn5YdWqVbjvvvvg42PaR7e4uBharbaSEuhudCd7xysL2MvO45QM3ef2ekRUC7KKsvDtqW8RnxqPs5lnYRSM6BbcDStGrBDnvH997GusjF9p8fxyc3CDv4s/LmZfLLf80m3vANNidi/3fBkPRT5k0RvfO7Q3eof2rsFPRkRERPVFtQP9SZMmoX379vDy8kJSUhK2bzdt33PkyBF88MEHiIyMrHYliexlFIyVBuySHv2yq+5zjj4R1YL/7v0v/r76tyQtPjUe2y9ux5AWQ5B8K9lqkA8A+Zp85GvyxeNxbcchpkkMruZeFf+7knsFuSW58HH2wfyB89ElqEutfyYiIiKqX6od6E+fPh1+fn44ePAg5s+fjwEDBgAADh48CHd3dzzzzDPVriSRvaozR7+y1fqJiCpy6dYlfHTgI7Tza4fnop+DTCZDTkkO9qfsF/OEeoSK29p9GvcpBoQPwJJDS8Qgv2fTnugc1Bmejp6IT43HgZQDKNAWINgtGHP6zil3j/g8TR4clY4W0wGIiIjo7lDtQB8AHn30UTz66KOStOnTp9dE0UQ2sza0XkDl2+vZ2qPPoftEZKsiXRFe3vYyruVdw+HrhxHdJBoxTWKw+/JuMYh/suOTeLH7i3huy3M4cv0IUvNT8ebON8UXAf4u/lg4eCEclY4ATL33eqMel3MuI9QjtMIg3t3BvfY/JBEREdVb8poqaP/+/Xj33Xfx+uuvi8dFRUU1VTyR3SrriS9vez0uxkfU+FzJuYKbBTcrzZean4rZO2bj86OfVzptJ0+Th+e2PIenf3sap9NPAwAW7FuAa3nXxDy/nPkFALDj0g4xbVDEIADACzEviGk7k3eKX7/Y/UUxyC+llCvRwrsFe+qJiIioQtXu0S8uLsaDDz6IrVu3QhAEBAYGYsGCBVi/fj0mTpyI3bt3o2nTpjVRV2pk7kQPuSAIlgG7javum+McfaKGSxAEfHP8G3wW/xkclY5YPXY1Wni3sJo3tyQX0/6YJg6pL9GX4MXuL5Zb9udHP8eR60cAAE9vehoDmg3A9kvbJXl2Xd6FS7cuifmC3ILQ1rctAKCtX1sMaT4E2y5uE/NH+UdhSPMh9n9gIiIiuqtVu0d/zpw5SE5Oxpo1a5CQkABfX18AwNKlSzFz5ky88cYb1a4kkS2s9bgbBaOkl95aPvM5+qfTT+P9v9/HP+n/1E5FieiOEgQBX/3zFT6L/wyAKXBfEbfCal6tQYtX/npFDPIBYO2JtWKPvLnredexIXGDeGwwGiRBfju/dmL67NjZ4gvDgeEDJavgPxf9nOSl4ys9X+Ge9URERGS3agf6v/32G3bv3o3HH38cnTp1glJ5+w+VqVOn4vTp09W9BZHdBAgwGA0V5jEfuj/x14n45cwveGvXW5J87NEnapgWHVyEn5J+kqTtvbLX4mWe3qjHvN3zcDztOADAWeUsnluwbwH2X90PcyviVogvEyP9IyXB+chWI7Fg0AIxreyWeKXD9ks1cW+Cl3u+DDcHN0zuMhntA9rb8UmJiIiITKod6KvVavj5+ZV7nvP0qa4ZBGmgbz50v+wf5mUX4zPHxfiI6j9BkL7cO3TtEH5KNAX5MsjQN6yveK5sr/75rPOY+OtE/HXxLwCAo9IRq0auwuMdHgdgetH38l8v4/tT34vPgrOZZ8Xh9p6OnlgxfAVWjVyFbsHdMLj5YLza+1UEuwWjZ9OekjoGuAYg0s9y69kJkROwa+IuTO02tSa+FURERHQXq5FV948ePYquXbtapCckJEAur7H1/ogqZHXVfWtz9M2G7pc9bz7Mv6LriKh+Sc1PxTObnoFSrsSSIUsQ7hWOZYeXiedf6/0axrYdi/Hrx+N63nUcuX4EXyV8hdT8VGw5v0X8+VfIFXh/4Pto69cWrX1b40b+DcQmx8JgNOCjgx/hWNoxNPdqjt1XdotlT+4yGS5qF3QJ6oKVI1dK6jW+7XgcSDkgHpsP2yciIiKqadUO9KdMmYL+/fvjqaeeQu/evVFQUIDff/8dCQkJWL58OebNm1cD1SSyjwChwuAdkL4gqGgxPvboE9UeQRCQUZSB3JJcFOuL0dK7JZxUTuL5PE0etl/cjm0XtyFfm4+B4QMxIXKCZBu57059h4zCDADAS9tewsNRDyMpKwkA0NKrJca2GQulXIlnuz4rTs0pnbdfKsIrAvP6zxPn1stlcrw/8H2siFuBNSfWADCtjF92dfxgt2CMazuu3M92T+g98HfxR3phOgDLYftERERENa3agf6MGTNw7do1LFmyBJ9++ikEQcCYMWMgk8nw0ksvYfLkyTVRT6JKWetxNx/Gay2frT36nKNPVDsu51zGaztek8xhb+XTCmvGroFKocKu5F14c+eb0Bq04vnzWeex5sQaTOkyBY93eBxGwSgOuwdMvfuLDy4Wj5+JegZymWmE2dAWQ7H6+GpcunVJPK9WqPF4h8cxuctki63rFHIFXuj+AtoHtMfc3XNRqC0UzynlSrza+9UKt7tTyBWY0WMG5uycgz6hfRDlH2XHd4mIiIjIdjUydH/RokV4/vnnsX37dmRmZsLX1xf33XcfwsPD0aVLFyQkJNTEbYiqTIBQ6Rz9soF/hXP0OXSfqMYl3EjAK3+9gnxNviQ9KSsJG89uxNAWQ/Hu3nclQX6pYl0xlh5eipY+LSEIArKLs63eo0fTHujs31k8lsvkWDR4Ef538n/wdfZFp8BOaO/fXjKCwJr+zfpj40MbEZ8aDxeVC/xc/BDsFgxXtWuln3Nw88G4L+I+DtknIiKiO6JGAn0ACA8Px5QpUyRpR44cQVpaWk3dgqjKrM3RN1f2fEUr9HPoPhGw49IOLNi3APc2uxez+8wWe8mryigYsSFxAxYfXCyOpGnm2QyRfpHYcn4LAODLhC9xLvMc8jR5AEwB+4vdX4SLygVfHfsKm85tAmBaVK+ZZzOx7EmdJuG7U99Ba9BCJpNhWvQ0wOxHO9QjFG/0qfr2r95O3hjcfLAdnxgM8omIiOiOsTvQX7duHVavXo2srCwMHDgQ7777LpydTVsRHThwAO+88w7++usvODlV3ENCVJuszdGvaOh+ZWXZymA0QCFX2JyfqCEwCkYsPrgYOSU52Hh2I/xd/PGvrv+qcjnphel4e/fbOHz9sJjWO6Q35g+aD2eVM7QGLbZf2o7s4mz8du43AKZV8N/q9xb8XfwBAHP6zsGZzDM4n3UeiRmJOJN5BgDgqnbFlK5T0CmwE75I+AJDmw9FK59WSE9Pr4HvABEREVHDYFdXzNq1azFx4kTs2rULJ0+exJIlS/DKK68gPT0dw4cPR58+fRAXF4c33ngDycnJNV1nIptZnaNvPnTfxp56W18IbEjcgL6r++LTI5/aVkmiBuLI9SPignIA8HnC5ziYctAin1Ew4nzWeSRlJVn83ORp8jDp10mSIP+RqEeweMhicd/6f0f/2+JF2cSOE8UgHzANv/93t3+Lx6U/xwPDB0KtUOOe0HuwZuwaPNL+kWp8YiIiIqKGya4e/aVLl2LmzJmYPXs29Ho9Zs+ejR9++AFXr17FqVOn8NFHH+Ff//oXXFxcarq+RFVibY6+uZpeZG/BvgUAgG+Of4PnY56v0bKJ6lLpUPlSgiDgzZ1vYvmw5Yj0j0RiRiLWHF+DuNQ4cbi9m4MbooOjMbXbVER4ReCrhK/ElwV+Ln6Y228uejTtISk31CMUY1uPxc9nfgYA+Lv444mOT1jUp09oH0T6R+J0+mkxbVjLYTX6mYmIiIgaIrsC/YyMDCxYsAByuWlAwNKlS/HNN98gPDwcv/zyCxwcHGq0kkS2sNYzb22OvvkQfFuH5HPVfbqb5WnysPvybgCAp6MnovyjsO/qPuRp8vCvzf9C/2b9sePSDoufk3xNPnYm70TCjQS8e++7+PH0jwBMq9x/M+YbBLoGWr3flK5TcODaAWQUZuD1e16Ho9LRIo9MJsPz0c/juS3PATC9EOgS1KUGPzURERFRw2RXoO/p6SkG+QDg4uKCpk2bYunSpVAoOC+Z6g9rc/TN2TxH347F+ARB4AJc1Cj8dfEvceX7YS2GYUrXKZjx5wycuHkCWoNWsrWdm4MbugV1g1wmF3v3c0py8MLWF8Q8T3R4otwgHwB8nH2w/oH10Bg08HT0LDdfdHA0JkROwLaL2zCjxwy7FwckIiIiakzsCvSVSsvLvL29rQb5I0eOxO+//27PbYiqzZY5+rWxGF8pg2CAUlZjm1sQ3XGCICA+NR7fnfpOTBvVehTcHNywcuRKfHzoY6w/vR6AqZf+2a7P4rEOj0EpN7X7fE0+ntn0jGTPem8nb0zsNLHSezupnCrd8k4mk+HV3q/i1d6v2vPxiIiIiBoluyIQrVaLlJQUScCk0+ks0gDg8uXL1aogka2sBeLW5ujbO3Tfnh59nUEnBjxENU0QBHyZ8CUyijLwbNdn4ePsU6Xr8zR50Bq08HX2laRfyL6AOTvnIKMoAwajAQXaAvFca9/WaOXTCgCgUqjwau9X0b1Jd5xKP4XRrUcj1CNUUpabgxuWD1uOSb9NQkZhBgDguejnxIX3iIiIiKjm2RWBJCYmolmzZpI0QRAs0ojqA4s5+nb26NszR7+yaQNE1bH78m6sOroKAHDo2iF8MvwTi0C7PMm3kvGvzf9CvjYfy4ctR0yTGPHc0kNLcSH7gsU1Aa4BmNdvnkV6v2b90K9Zv3LvFeAagE+Hf4pFBxYh3DMco1uPtqmORERERGQfuwL9gIAATJ06tdJ8giDg888/t+cWRFVW3mJ8lQXbtvbU2zN0X2fUVfkaaty0Bi10Bh1c1NXflWTj2Y3i16n5qXhm0zNYNXIVIrwiLPImZSXhx39+RFu/thjdejTe2v0WckpyAACfHPkEa8augUwmQ0puCg5eM22Z56h0hJ+LHwJcAjCu7TgMCB9g9wiVCK8IrBixwq5riYiIiKhq7PqLLTAwEHPnzrUp72+//WbPLYhsVtGCd0bBaDFH31oeW+9TVezRp7IyCjPw0IaHoDPqsGbsGqsBua3SC9Nx6NohSdqt4luYs3MO1t6/VgzItQYtvkz4EmtOrIHBaMBv537D2hNrkZqfKl6XmJGIhBsJ6BrcVdzSDjCtfP9kxyftriMRERER1Q27lic+ePBgreSlu4s9PeTWVNRrXqwvxuzY2RXetzYX42OgT2XFJsciT5OHYl0xYi/FVqus35N+F9vuo+0fRXPv5gBMPfffnvxWzPfWrrfw9bGvJS+8ygb5pdacWAONXoNN5zYBMC2sxyH2RERERA2TXYG+o6PlfsY1kZfIHqviTXOUrQXiB1IOWKSZ98zbGsBzjj5V1+n00+LX1oJtWxkFI347ZxotJZPJ8EjUI3ir71vi1nKrjq7C1dyr2HtlL3Zc2gEAUMqVmBA5AV5OXmI5z3R+BkFuQQBMPyv/3ftf5GnyAACDIgZVuK0dEREREdVfXA6cGrw1J9bghe4vVJ7x/9nbo28PnYFz9Om20xm3A/3r+dftLudo6lFczzNdHxMcgyC3IAS5BeHhqIfx3anvoDVoMfX3qZIpLXP7zcWwlsMwqdMkrDuxDp6OnpjUaRI8HT3x0cGPAABbL2wV8z/Q7gG760dEREREdcuuHn2i6qqpYft23du8R9/Guffs0W98dAYdCrWFd+ReeZo8XM29Kh5b69HX6DVYEbcCPyf+bHGurJ8SfxK/HtNmjPj1v7v9W1x1P70wHTcLbgIAYprEYGiLoQAAfxd/vNLrFTzT5Rko5AqMaTMG/i7+kvK7BHVBe//2VfyERERERFRfsEef7nq1uRhf6foBuSW5kMlkcHdwr3IZVDsyizLxyM+PQG/U49Phn6KdXzubrzUKRuiNeqgVapuvScxIlBzfLLwJnUEHlUIlpv2U+BO+PvY1AKClT0t0COhgUU56YTp2X94NAPB28sa9ze4VzzmpnPDl6C8x86+ZOHnzJADTkP3Xer9W7oKVzipnrB67GsduHINCroCzyhldgrqUm5+IiIiI6r8G3aOv1Woxffp0dO3aFV27dsWLL74IrVZb6XVpaWkYNWoUmjVrVvuVpHqvthfjS8lNwbBvh2Ho/4ZWa1421azN5zbjVvEt5Gvy8eLWF21+kZOnycO4H8fhvnX3ISkrqdx8c3fNRa+vemHypslYd2Idjt04JjkvCALSCtIkafGp8Va/LmvjmY1imx3XdpzkRQFgCv5XjlyJ8W3Hw8PRAzN7zUSYZ1iFn8nfxR9DWgzBoIhB6BXSC45Krq1CRERE1JA16EB/5syZOH36NI4cOYIjR47gzJkzmDVrVoXX/PXXXxgxYgQMhoq3XKOGRWuo/AVPqUu3LmHaH9NQpCsCYHsAb0sgaP7SQG/U44P9H0Br0EJr0GLRgUU215Nq14mbJ8Svc0pyLLaqK8/W81txLe8aCrWF2Hhmo9U8GYUZ2HJ+C7QGLY6nHcfSw0vx1bGvLPKVffEjCAJOpZ8Sj0/dPCXJe+jaIfyc+DN+OfsLAEAuk2Nc23FW769WqDG7z2zEPhnLufZEREREd6EGG+hnZWVh5cqVeOWVV6BQKKBQKPDSSy/hs88+Q3Z2drnXKZVK7N69GzExMXewtlTb8jX5VRpaf+jaIXyZ8CUA23v0bclnnkdn0ImrmAOmgJLqnlEwSgJ9APgs/jOb2tCuy7vErxPSEqzmuXjrok31KLsgX0peCnJLcsXjU+mnxPqsP70e0/6Yhvn75iOrKAsA0L9Zf4u59UREREREQAMO9Pfu3QudTofo6GgxLTo6GjqdDnv37i33ugEDBsDNze1OVJHuoLLBtK3+Sf8HgO1z723p+bfWo6+QK8o9T3XjQvYF5GvyJWmJGYmSxfKsyS3JRcKN28H9xeyLYnAeeykWo78fja+PfY0L2RfEPAPCB5RbXunK+cDt9lgqpyQH1/Ku4dKtS1hyaInknFwmxxMdnqiwrkRERER092qwi/FdunQJSqUSvr6+Ypqfnx8UCgUuXbpUo/fSaDTQaDTicV6eKag0Go0wGmsvcDMajRAEoVbvUVdq+nPlluRWebE8hUwBo9EIg2DbNA6D0VBpnXV66XZ6Gr0GZd8P2FJGQ9JQ22j89dvz311ULijUmVbeT76VjBD3kHKv23N5j8XLmoQbCegb2hdLDy9Fan4qVsavRL+wfuL5iR0mIsIrQhxBMrLlSPx+/ncApkC/9Ht3Mu2kxf2Oph7F+sT14tSUIc2HoGfTnmjh3QKtfFo1uO97XWmo7ZTuLmynVN+xjVJD0NjbaVU+V4MN9IuKiqBWW654rVarUVRUVKP3mj9/Pt5++22L9IyMDJSUlNTovcoyGo3IzTUFsHJ5gx18IdLpbgfB+fn5yMrKkqRVR8rNFOQX5lepPJ1Gh/T0dJSUlNh03a1bt5Cenl5hniJdkaSszOxMaDVaMa2ouKjSMhqShtpG91/aL/6b3NvsXmw8b5prn3gtEW2c2pR73R9n/rBoK3vP74Wb3g1Xsq+IabEXY2EwGiCTyeCic8HoJqOhL9IjszgTjzV/DL+e+RWCIOBixkWxPcRdjbMoe+G+hSjQFgAAwtzDMKXNFDgoHAADGlU7qm0NtZ3S3YXtlOo7tlFqCBp7O83Pz6880/+rd4H+vHnzrAbVZcXFxcHZ2dnqCvtarRbOzs41WqfZs2fj5ZdfFo/z8vIQEhICPz8/uLvX3nZpRqMRMpkMfn5+jaKhqlS3Vwd3c3ODj4+PJK063D3d4ZrrWqXyXF1c4e/vD5VaBZW+8uvcPdzh7285J/rkzZM4lnYMY1uPhaPMUVIHV3dXODs5i2lqB7XVMhqqhtZGDUYDfjz9I05kn4BKpYKr2hWjIkfh98umHvZ8WX65/z7FumKczD4JlUoFdwd3cbrIhYILuFBywaLtyRVyhLiHIDTYtK/9cwHPieeCPYKRXpiObF02/P39UaIvQUpRClQqFYJcg5BWkAYBAjSCBiqVCkq5Eh8M+QAhvuWPNqDyNbR2SncntlOq79hGqSFo7O3U0dH2nZHqXaA/c+ZMTJ06tcI8vr6+SElJgV6vR2Zmpjh8PyMjAwaDARERETVaJwcHBzg4OFiky+XyWm9AMpnsjtznTiv9XDVZXlUp5UrI5XKbV9239u9QrCvG5M2TAQBJWUl4tferkvNGGCVz9AWY3i4ajAb8k/4P2vi2gYPSsm01JA2pjS4/shzrTq4Tj7s36Y5w73Dx+FreNbyz9x38k/4P3hvwHlr7thbPHUk9Ig6hHxQxCCdvnsSF7As4l3UOTionq/dr4d3C6velqXtTpBemI1eTi2J9MZKyksQpAT2a9sDJ9JO4mH17Qb+p3aairX/b6n34u1xDaqd092I7pfqObZQagsbcTqvymepdoO/q6gpXV9dK8/Xt2xcqlQrx8fEYOnQoACA+Ph4qlQp9+/at7WpSPWPPIncKmSkAt3Vuv7V7pOSliF9vv7QdM3vNlJzXGXSQy27/QJaWsfjgYvx4+kd0CeqCoS2GYv3p9ZjcZTIivCIQ7hlu14sLqlzZFfOHtxyOl3q8BE9HTzipnFCsK8bh64fFf6P/nfwf3h3wrtVr+zfrD6VciQvZF2AUjJIF+spq7t3canoTtybiNdfzr2Pf1X3iufYB7QFADPQ7B3bGkx2ftOfjEhEREdFdqsG+5vDx8cHUqVOxePFiGAymBc6WLFmCqVOnwtvbG4Cphz8kJARbtmyp49pSbavqQnwAxJ52W18SWLtHiV66RoP5wn56o158oVD2Xj+e/hGAaSG39/9+HxeyL+D1Ha9jwk8T8PnRz23/EP/vYvZFpOan4unfnsaTG5+0axeCxi6zKBPX8q4BADoFdsI7974DLycvyGQycQG+sm3hTOYZ8Wu9UY+/r/4NAHBRuyA6OBpDWwyt9IVMC+8WVtOD3YLFrw9dO4SfEn8CYBpl0qNpD4xrOw4qhQrBbsF4+963JS+LiIiIiIgq06D/ely4cCHatGmDmJgYREdHo1WrVli4cKF43mg0ori4WLLA1ZEjR9C/f3+sXr0aaWlp6N+/P9577726qD7VIOH//1cVSrlpQIvNgb6V8jV6jeTYvCydUScJBm251xcJX9hUn1Kxl2Lx0IaHMPr70Th58yQSMxKx9NDSKpVR2/RGfY2UozPocOzGMYsXLLY4duOY+HXnwM6Sc03dm1rkv5J7BUU608KeCTcSxO34eof0hkqhQoeADpjaVTrNqHuT7pLj5l7We/Sj/KPEr5cdXibeZ2ybsfB38Udbv7bYM2kPfnrwJ8lLASIiIiIiW9S7oftV4eDggGXLlpV7PiAgAJmZmZK0mJgY7N69u5ZrRneaXT36pUP3bXxBYO0eGoM00DcYK+/Rt6euFXltx2sWaSdunqj0ugMpB7DuxDpMiJyAe8PvrdE6lfXxwY/xU+JPmNFjBiZEToDOoENcahza+LaBt5N3lcqav28+Np3bhC5BXfD5qNsjHw6mHMTCAwvR1L0pFg1eBJVcBb1RD5Xi9gJ5x9LKBPpBlQf6giAgKSsJnQI7Yffl3WL6vc1uf6+e6vwUzmSewe7Lu+Hm4Ibnop/D4euHAQAqhQohHtYXz+vRtAcGhA/AzuSdYppKocLTnZ8Wj9UKy11FiIiIiIhs0aADfaJSds3Rr+LQfWv5zHv0zYfuW5ujX9p7W5ts6UF/ceuLAIC41DjET4mvJLd9jIIR3576FgDw4f4PMSHSNDXhm+PfIMQjBD9P+NnmYelGwYhN5zYBuN3DfqvkFjad24TVx1cDAK7mXsX60+vxU+JPyNfk48vRXyLCy7Q45/G04wAAuUyODgEdJGWXDt03dzbzLFp4t8C2i9sAmILxXiG9xPNymRwLBi3AzuSdaO7VHBFeEQj1CMXV3Kto799eHDViTiaT4a1+b+Fc1jlcz7sOALi/zf3wd2k8OzIQERERUd1hoE+NQlWH7QNVX4zP6tB9Q8VD9/VGvUWgn6vJrWpVq0xn1FV4PrdEWge9UV9uUFod5vcRBAHfHP8GAJCSm4LMokybg9sL2Rckx4sOLMKW85brbyw5tET8+pczv2Bmr5nI1+TjfPZ5AEBLn5ZwVUsX/LTWow8AZzLOILMoU/wc90XcBxe1iySPUq7E4OaDb9dr8CLsTN6J4S2HV/h5XNWuWHjfQry87WW4ql0xucvkCvMTEREREdmKgT41CvVlMT5rc/TNA/2ckpwq1rTqdIaKA/1zWeckx9nF2bXSm5xdnC05LtAWSI5tmWt/Pe86/rr4F/K1+ZL0skG+TCaz+u+TfCsZgGnYful58/n5AModYr/nyh5xSz2VQoWp3Sre+hMAIrwixFEElWnl0wqbH9nMXRaIiIiIqEYx0KdGwZ6h+zWxGJ95oGo+ZF5v1IsvFErvZd7LXRsqG7p/LlMa6FelZ70qsoqzJMc3C29Kjs0Df2ve3Pkm/kn/p9zzoR6hWDFiBdafXo+1J9ZKzpWObPjt7G9iWkyTGIsy/F38oVKooDPooJQr0cS9Ca7kXJHU7+HIh2tlYTwG+URERERU0xr0qvtEpQQIVe7Vr+pifNZeCJjPt7c2dF8G6ar7NTl0v7xt9KwN3c8pyYHOoMPF7Ivi8PlSmUWZFvlrQlaRNNBPykqSHFcW6AuCUGGQD5gWtgt0DcTQFkMtzqUVpCGtIE3cGs/PxQ+9Q3pb5JPL5OjV1DT3fkD4AHQM6Cg57+Psg6c6P1VhPYiIiIiI6gv26FOjcCeG7ltjS6BftkffIBhqrEf/17O/4v2/37d6zrxH/2DKQUz/czoclY5WFwM0D/RL9CX4+tjXCHQNxLi24+yuo3mPvnnQXlmgb8s0h65BXQEALb1bomNAR8mOAzcLb2JD4gbx32Vcm3GSf4+y5g+aj7OZZ9HGtw3+OP+HuPBfmGcYPh7yMdwd3CutCxERERFRfcBAnxoFo2Cs8oJ8pXPnbX1JYO2FQLGuWHJsbXu9sj36giDUWI/+f/f+t9xz5nP0X9j6AgDLFxOlzAP97099j6+PfQ0AaOPbBu382knOGwUjTt08hQjPCHx6/FNcLLyIe0LvwSNRj8DLyUvMZz5H/3TGaclxZYF+RlFGheeB21vlyWQyLB6yGMfTjuPH0z/iyPUjMBgN4or8CrkCY9uMLbcctUItrsY/vOVwnM86D7VCjcldJlsswEdEREREVJ8x0KdGwZ5V90sDcFt79BcdWISRrUZKVmwvGzjLZXLLxfgMOose/TuxGB8AvPDHC5jZaybCPMMqzWs+xP7TuE/Fr/+88Kck0Ncb9Zjx5wwcunYIAKDT6aBSqZCUlYRD1w5h7f2358mbv0A4nV61QP9mgXROv1qhRnRwNPan7BfTvJ28xa89HD3Qr1k/xKXG4cj1I5JrezXtBT8XvwrvV/Y+s3rPsikvEREREVF9wzn61CjYM3Tfnnn9K+JWSI6L9bd79B2VjjAIlj36ZYN/QRDuyGJ8AHDw2kG8s+edcs+XndO+9cLWcufCl04D0Og1eGvXW+jxZQ8xyDeXmJEoWaDQvEffXGWBfnphuvj189HP48/H/0T/Zv3FtNa+ra1eF+QaZJHWKbBThfciIiIiImosGOhTo2BP0C4IQpVHAuy+vFtyXLZH30HpYDF0X2fUSdIMgqHcBfSqwtbPWna+urn2/u3FFd+LdEWY9OskXLp1yWI6wuWcywCAbRe34Y/zf1R6z9T8VPFr8zn65nJKcnDk+hFJwK81aMXvWdlAv7Vva7g7uGNoi6GI8IqAq9oVc/vNtVpukJtloB/lH1Vp3YmIiIiIGgMO3adGwZ4F9YyCsVoL8QHSOfpqhdrqYnwquUo8FgQBhbrCSssVBKHCbdfKjiSojEavsZrurHKGp6MnbhXfEtPiU+MR6RcpyZecY9qLPq0gzeL60hcdTd2b4lreNQCmfe9L95E3nxJgbv3p9Vh/ej06BnTE6NajsSJ+BbKKsuDj7IMFAxdIAv3S7f+cVE744YEfYBSM4haJ5sx79OUyOdr6ta2wLkREREREjQUDfWoU7B26X+1Av0zALYPMYui+zqCDWqEWj42CUTK0vTx6ox4qhcoiPbMoE/uu7kML7xY21/Hzo59bTXdUOlqsF7D6+GpJcA0AGYUZKNAWSPKuHrsaEV4R+CzuM6h0KoQFhOHdve8CAK7nXwdg+qy2rkdw4uYJ/JPxj9iTn1WUhef+eE6yqGBpoA+YAvfSxRStMe/RD/cKh7PK2aa6EBERERE1dAz0qVEQUPVh+EbBaNcLgrLKDt23NkLAfI6+UTDa1BtfXqD/RuwbSLiRIFkQsDJrTqyxmu6gdIBSrpQE0+ZBfqnkW8mSoN3byRvOKme81OMlpKen47rhunjuep7p65ySnCq9SLGY9lCmXg5KB7ip3Wwuy8PBQ3Ic5cdh+0RERER09+AcfWoU6mroftlA3yAYrM7RNw/0y9virqzSBfDMJdxIAFD5Ina2cFQ64pnOz9iUNzknWTLE39PRU3K+iXsT8evSHn3zFfdt9fWYr9ExoKMkLcAloMKpDObM80b6R5aTk4iIiIio8WGgT42CXUP37ViMz1zZgNwoGK2uum8e/JsvdmeNeTmAfZ+xIo5KRzzd+elyg30Px9u94klZScjR5AAAVAoVnJROkry+zr7iFIXSufplV9x/rP1jcHdwr7ROEV4RaO/fHgMjBkrSyw7bt1XZof2tfFpV+XoiIiIiooaKgT41CvYE7DXRo1/2eoPRUOnQfQA2z9E3pzPqrOS0n4PCAXKZHIMiBlmcG9x8MDY+tFE8PnnzpDh039PR06LHXC6TI9gtGICpR18QBGQUZojng92CsXjI4krrNLr1aMhkMvQO6S1JtyfQnz9wPlQKFWKaxKCdX7sqX09ERERE1FBxjj41CvYE7PYsxmce4Jbtebf24kBj0Fj0zttyT2uBvi0vCKrCUekIAHBRu1ic83fxh7uDO8K9wpF8Kxnnss6J57wcvayW18StCS7nXIZGr0F2cbZkm70gtyB0CuyEZcOWITEjET+f+VnyIsBZ5Yzxbcfj4aiHAQChHqGSsquyJkGpgRED0SukFxyVjlUa9k9ERERE1NAx0KdGo6pD22tiMb6yw/KNgtEiQC/WFVsM3beFtUDfliH/VeGgdAAAq6vRlwbW7f3bI/lWsuQzmM/PL1V2nv7oH0YjzCNMPG7q3hQA0CukF3qF9MKBlAOSQH9uv7mS4foymUyyZV/ZLQqrwknlVHkmIiIiIqJGhkP3qVGoq8X4yvbWGwTLofvF+mK77mE10Ldhtf6qKO3Rtxbou6hMvfwdAjpYnCsv0G/re3ufeo1eg6SsJPG4dFh/KfMeel9nX4vy3hvwnriN3tg2Y61/CCIiIiIissAefWoU7Bq6XwOL8ZmvqG8R6OuKrS6sV5nq9OgPbj4YMsiw7eI2MW1kq5H4Pel3ST4HhalHX61QQylXSu5ZGohXJdAf1nIYckpysPTwUkm6j7OP+FLBvPxS1gL9SP9I/DzhZyjkCosXBUREREREVD726FOjUdWgvbo9+uZD/w1Gy+319EY9NAZNlcu2Ntzf1h59B4WDRS+9t5O3Zb7/H7oPWPbql87bb+bZDG4O0v3rywv0lXIlnuj4BNoHtJekN3FrYpHXlkAfAEI8QhjkExERERFVEQN9qjM1uV3cnVqMr6J7lvfioFBbWOWyz2aexQ///IA8TZ6YZutifAq5wmJuunkgrVaoJdvPmS/IVxqIy2VyRPlFSc6VF+iXauUt3cqudH5+WaVTA0qVfelARERERETVw6H71CjY89KguovxWet1tzbkvkBbUOWy3937LgAgMSMR79z7DgCgSFdk8/XmPfQeDh5QyBVinc0Dayel9MVA2R739gHtcfDaQfG4skC/tW9rybEtPfpERERERFRz2KNPjYIAwa5V96vTo29t7r21ve4LdVXv0S/1x/k/xK/N5+g/F/0c1Aq11evMA3cXtYtknrz5nHnzHv2yPe7m8/Qr7dH3kfbol12NvxS3uyMiIiIiqj0M9KlRuFOL8clwO0C1tUdfZ7AM/s2182uH0a1HV5in7Bz9t/u/jac7P41VI1dZ7DkvCILF0H0XlYu4+B4AydcA4KyUjgAo2+Me5R8lCcy9HL0qrGdzr+aSY2s9+rZOQyAiIiIioqpjoE+Ngj1D8Gt6jj5gW1BvjVKuRJBrUIV5ygbHpYF8+4D2+OWhXywCe/Oh+65qV0kvvvnQfYse/TLHrmpXhHuGi8cejh4V1tO8LtZ69BUyRbl1JSIiIiKi6mGgT42CgKr3zt+pofu2UMqVUMorXjKj7NB986H35qwN3S8b3Jtfbx5sm/f4l442aOvXFn7OfhXeGwCe7vw0ANMwfmsr6j8Y+aA47eCDQR9UWh4REREREdmOi/FRo2D30H07RgJsv7gdZzPPYljLYRbnqtOjr5ArKsxTdui+eSBf9nPIZDKLXnVXtatk2oHF0H2zQN98Dv1j7R9D37C+CHINsml+/dRuU9EvrB8ivCIkq/uX8nbyxq8P/4o8TR5aeLeotDwiIiIiIrIdA31qFOxddb+qLwjSCtIwO3Y2AOBY2jGL8/b26CtkinJ79I2CEXKZXLLqvnkgX5YgCFaH7pdlfi/z7e7MyWQyi7UAKiKXyRHpH1lhHn8Xf/i7+NtcJhERERER2YZD96lRqOqw/dJr7Lmu1MmbJy3SqtOjX16gXxrgS+bom/XoP9juQfHr3qG9Lc6r5KoK71/RiwMiIiIiImpY2KNPjYJ5j/6/u/0bn8V/VuE11Z2jb43dPfry8nv0i3RFcFW7okBbIKaZB+b/6vovaAwaeDp64t5m9yIlL0VyvrLh9pW9CCAiIiIiooaDgT41CkbBKAn2h7ccjh3JO3A+63yF19R4oF8LPfq/nv0VaQVp2Htlr5hm3mPvrHLGq71flRxXRXVGNhARERERUf3CQJ8aBfNAVSaTSbZws3qNnYvxVaQ2Vt3//OjnFmmVDbU3fxFQmZr+PhARERERUd3hHH1qFKwFqtZWey+rPvXoV7QYnzWV5S37IiDMM6zS8tijT0RERETUeDDQp0bBKBgtgtXKguHqLsZnTW306NtDLpNjxYgVmBA5AUuGLKk0f7+wfuLXz3R+psbqQUREREREd16DHrqv1Woxa9Ys7Nu3DwDQu3dvLFq0CGq12mr+oqIirFy5Er/++isUCgVyc3PRv39/vPPOO3B1dbV6DTUMFkP3UfnQ/XrVo1/BYnz2imkSg5gmMTblDfcKx4f3fYiU3BRMiJxQo/UgIiIiIqI7q0EH+jNnzkRiYiKOHDkCABg6dChmzZqFpUuXWs2fkJCADz74AEePHkXTpk2Rm5uLe+65B5mZmVi7du2drDrVMGtD9xXyOgj060mPvj0GhA+o0/sTEREREVHNaLBD97OysrBy5Uq88sorUCgUUCgUeOmll/DZZ58hOzvb6jVubm548cUX0bRpUwCAh4cHJk6ciJ9++gkGg+FOVp9qmPmq+wAazWJ85p7o8IRd9/B09BS/dlO72VUGERERERHVfw020N+7dy90Oh2io6PFtOjoaOh0Ouzdu9fqNR07dsSbb74pSXN0dITBYIDRWLM9u3RnWV11vy569G0cum++/Z2tgf6cvnPwYvcX7arbG33egFKuhFqhxoweM+wqg4iIiIiI6r8GO3T/0qVLUCqV8PX1FdP8/PygUChw6dIlm8s5ePAgxowZA5VKVW4ejUYDjUYjHufm5gIAcnJyavUFgdFoRF5eHtRqNeTyBvtORmQovj1qoii/CHm5eZK06ijKL0JJcYlYXm5OLvRF+grLLyksQW5ubo3VobQepeUp5AoYjNbLdpI7Ib84XzzWFmol15YnzDFMbH9V5QlPfD/ie8hlcjgZnJCTk2NXOWU1tjZKjRPbKTUEbKdU37GNUkPQ2NtpXl4eANu2xm6wgX5RUZHVRffUajWKiopsKuPs2bPYtm0b4uPjK8w3f/58vP322xbpYWGVb1tG1h3H8Votr9WMVjZdsxY1uzaDvZ/L1uu6zOhiV/lERERERNQ45Ofnw8PDo8I89S7QnzdvntWguqy4uDg4OztDq9VanNNqtXB2drZylVR+fj4eeeQRrF27Fs2aNasw7+zZs/Hyyy+Lx0ajEdnZ2fDx8YFMJqv0XvbKy8tDSEgIUlJS4O7uXmv3IbIX2yg1BGyn1BCwnVJ9xzZKDUFjb6eCICA/Px/BwcGV5q13gf7MmTMxderUCvP4+voiJSUFer0emZmZ4vD9jIwMGAwGREREVHh9SUkJxo4dixkzZmD48OGV1snBwQEODg6SNE9Pz0qvqynu7u6NsqFS48E2Sg0B2yk1BGynVN+xjVJD0JjbaWU9+aXqXaDv6upq0572ffv2hUqlQnx8PIYOHQoAiI+Ph0qlQt++fcu9Tq/XY8KECRg3bhwmTpwIAPjpp58waNAgeHl51cyHICIiIiIiIqojDXaFAh8fH0ydOhWLFy8WV81fsmQJpk6dCm9vbwCmHv6QkBBs2bIFgGnI/cSJE+Hi4oLu3bsjPj4e8fHxWLt2rd0LnBERERERERHVJ/WuR78qFi5ciFmzZiEmJgYA0KtXLyxcuFA8bzQaUVxcDJ3OtOXZ1q1b8d133wEAfvjhB0lZy5cvv0O1tp2DgwPmzp1rMW2AqL5gG6WGgO2UGgK2U6rv2EapIWA7vU0m2LI2PxERERERERE1CA126D4RERERERERWWKgT0RERERERNSIMNAnIiIiIiIiakQY6NdTGzduRLdu3dCnTx/069cPp0+frusq0V1s/fr1GDx4MAYOHIjo6GiMHz8ely5dkuRZtWoVunTpgt69e2PEiBG4fv16HdWWyLTAqkwmw+7duyXpbKdUH1y5cgUPPfQQBgwYgA4dOqBr167YtWuXeJ7tlOqSRqPBSy+9hE6dOqFfv37o3r07Nm7cKMnDNkp3mlarxezZs6FUKnH58mWL85W1SUEQ8M4776BLly6IiYnB448/3vh3XROo3jl8+LDg6uoqnD17VhAEQVizZo3QpEkTIS8vr45rRncrlUolbNu2TRAEQTAYDMLEiROFli1bCsXFxYIgCMLPP/8sBAQECDdv3hQEQRDefvttoVOnToLBYKizOtPd6/r160JoaKgAQNi1a5eYznZK9UFGRoYQHh4u7NixQxAEQTAajcKECROE5cuXC4LAdkp1b86cOUJ4eLj4d2dCQoKgVquF48ePC4LANkp3XnJystCjRw/hySefFAAIycnJkvO2tMmPPvpIiIyMFAoLCwVBEISnnnpKGD169B37DHWBgX49NG7cOGHChAniscFgEAICAsQ/AojutAceeEByHBcXJwAQ9u/fLwiCIHTp0kV49dVXxfM5OTmCUqkUNm/efEfrSSQIpmfoZ599ZhHos51SfTBr1izhoYcekqRduXJF/MOV7ZTq2siRIyV/hwqCIPj5+QmLFy8WBIFtlO68U6dOCefPnxd27dplNdCvrE3q9XrBz89PWLFihZjn9OnTAgDh1KlTd+Qz1AUO3a+HYmNjER0dLR7L5XJ07doVO3bsqMNa0d3sp59+khw7OjoCMA2junXrFhISEiRt1sPDA61atWKbpTtu8+bNUKlUGDp0qCSd7ZTqi59//hn9+vWTpIWGhqJZs2Zsp1QvjB8/Hn///TeuXbsGANi2bRsyMjIQEBDANkp1IioqCi1atLB6zpY2efLkSWRkZEjytG3bFi4uLo263SrrugIklZWVhdzcXAQGBkrSAwMDERcXV0e1IpI6ePAggoOD0bt3b5w8eRIArLZZ83n8RLWpsLAQb775JrZt2waNRiM5V9oW2U6pLhUWFuLSpUswGo147LHHcPnyZTg7O+PZZ5/FAw88wHZK9cKkSZNQUFCAqKgoBAUF4dy5cxg/fjwefPBB/s6neseW56a1PDKZDAEBAY263TLQr2eKiooAAA4ODpJ0BwcH8RxRXdJoNFi4cCGWLVsGlUrFNkv1xn/+8x9MnToVQUFBFgv1sJ1SfZCTkwMAmDNnDmJjY9GlSxccOXIE/fr1g8FgQHBwMAC2U6pbq1atwocffoijR4+iefPmOHHiBHbt2gWlUslnKdU7trTJu7Xdcuh+PePs7AwAFr1RGo1GPEdUl0p7nsaPHw+AbZbqh2PHjuHw4cOYOnWq1fNsp1QfyOWmP7tGjhyJLl26AABiYmJw//334+OPP2Y7pTonCAJef/11PPvss2jevDkAoGPHjti8eTPmz5/PNkr1ji1t8m5ttwz06xkfHx94eHggLS1Nkp6WloaIiIg6qhWRyeuvvw6lUon33ntPTCttl2yzVJd+//13FBcXY8CAAejfvz8efvhhAMCMGTPQv39/GI1GAGynVLf8/Pzg4OCApk2bStLDwsKQnJzM5ynVuYyMDOTk5KBZs2aS9PDwcGzYsIFtlOodW9qktTyCIODmzZuNut0y0K+HBgwYgPj4ePFYEAQkJCRg0KBBdVgrutt98MEHuHz5Mj7//HPIZDIcPXoUR48ehZeXFzp37ixps3l5eUhKSmKbpTvmP//5DxISErB7927s3r0bP/zwAwBgyZIl2L17N6Kjo9lOqc4plUr07NkTN27ckKTfvHkToaGhfJ5SnfP19YWDg4NFG71x4wacnJzYRqnesaVNdujQAX5+fpI8Z8+eRWFhYaNutwz066HXX38df/zxB5KSkgAA3377LRQKBSZOnFjHNaO71cqVK7Fu3TpMnz4dCQkJiI+Px+bNm3Hq1CkApvmma9asQUZGBgBg2bJliIqKwvDhw+uy2kQSbKdUH7z22mv49ddfkZycDAC4cuUKNm7ciBdffBEA2ynVLblcjokTJ+LLL7/ErVu3AAAJCQnYvn07JkyYAIBtlOqfytqkQqHA66+/jk8//VSck//RRx9h1KhRiIqKqrN61zYuxlcPxcTEYM2aNXj00Ufh5OQEuVyObdu2wc3Nra6rRneh/Px8PP/88zAajejVq5fk3DfffAMAGDduHNLT0zFkyBA4OjrCy8sLmzdvFuejEt1JM2bMwKFDh8Sv27Rpgx9++IHtlOqFoUOH4pNPPsH48ePh7OwMvV6Pjz76CE888QQAPk+p7n388ceYN28eBg4cCGdnZ+Tn52PBggXiyyi2UbrTtFotBg8eLC5o+vDDDyMkJETc/tmWNvnSSy+hoKAAvXv3hkqlQsuWLbF27dq6+Dh3jEwQBKGuK0FERERERERENYOv3oiIiIiIiIgaEQb6RERERERERI0IA30iIiIiIiKiRoSBPhEREREREVEjwkCfiIiIiIiIqBFhoE9ERERERETUiDDQJyIiIiIiImpEGOgTERERERERNSIM9ImIiIiIiIgaEQb6RERERERERI0IA30iIqJGpn///vDw8EBgYKD4n4eHB2QyGVxdXSXp3t7eaNasGTQaDSIjIzFo0KC6rn6lVq9ebfFZbty4YTVveno67r33XrRv3x4PPvig5Nwnn3wiXq9QKCCTye5E9YmIiGodA30iIqJGaOnSpUhLSxP/W7p0KQBg5syZkvRffvkFAGAwGJCTk4PMzMy6rHaVlP0sQUFBVvP4+/tj8+bNcHV1RUZGhuTctGnTxOtDQkLuRJWJiIjuCGVdV4CIiIjqnrOzMy5fvgy5vPH1Abi6uqJ169a4fPlyXVeFiIjojmCgT0RE1MisXbsWHh4eNuWNiYlBbGwsAEClUtVmtYiIiOgOaXyv7YmIiO5yoaGhNgf6zs7OOH/+PAIDA+Hk5ASZTCbp+d6xY4fk3KlTpzB16lSEhobC09MT999/P65fvw5BELBgwQK0bt0anp6eGDRoEM6dO2dxP61WiwULFiAqKgre3t7w8vJC3759sWHDhpr6+ERERHc9BvpERER3uaFDhyItLQ0PPfSQxblBgwZJzr3yyit46qmncPXqVezZswexsbG4//77sXjxYnTo0AFnz57FsWPHcO7cOYwePRpGo1EsS6fTYfjw4ViwYAEWLlyIzMxMpKamol+/fnjwwQcxf/78Gvk88fHxeOihh/DKK6/gjTfewJIlSyT1ICIiauwY6BMREZHNhgwZgu7duwMAOnbsiNGjRyMuLg4pKSkYPnw4ZDIZwsPD8cQTTyApKQlxcXHitcuXL0dsbCzmzJmDYcOGQS6Xw8nJCe+++y66deuGuXPn4vr169Wq344dOzB48GC89dZb+Oijj/D+++9j5MiR2Lp1a7XKJSIiakgY6BMREZHN7rnnHslxaGgoAKBnz56S9LCwMADA1atXxbR169YBAEaMGGFRbs+ePaHT6aoVkBsMBjz99NMYPXo0IiMjxfQWLVqgd+/edpdLRETU0HAxPiIiIrKZn5+f5FitVltNd3BwAAAUFhaKaaVz9vv372+xZ71Wq4WLiwtu3Lhhd90OHDiAlJQUtG/f3u4yiIiIGgMG+kRERGSz8rbfq8q2fMePHy933/vqKB32HxwcXONlExERNSQcuk9ERER3RJs2bQAAKSkpFueMRiNiY2Nx8+ZNu8svDfCLi4vtLoOIiKgxYKBPREREd8STTz4JAPjxxx8tzv3+++8YOnQoDAaD3eX36tULQUFBOHr0qMU5vV5vd7lEREQNDQN9IiIiuiOmTZuGwYMHY8WKFfjxxx9hMBggCAJ27dqFKVOm4K233qrWsHulUolVq1bhu+++w6lTp8T0w4cP4++//0Zqaio0Gk1NfBQiIqJ6TSYIglDXlSAiIqLakZCQgOHDh6O4uBh5eXlwcXGBq6srVq1ahTFjxgAA/vzzT0yaNAm5ubkoKSmBr68vYmJisGXLFpw4cQJDhgyRnBs/fjyWLl2KsLAwFBQUoLCwEF5eXujZsye2bNmCDh064MqVK8jLy4O7uzt8fX1x8eJFAIBOp8PSpUuxdu1aXLt2Dc7OzggLC8Pzzz+PRx991KbPtHr1ajz11FOYO3cu5s2bZ3F+165dWLp0KVq3bg21Wo2QkBBs374de/bsQUhICL766it06tRJck2zZs1w5coV8M8iIiJqDBjoExERUYNSWaBvDwb6RETUmHDoPhEREREREVEjwkCfiIiIGhSVSgUXFxcsW7YMgYGBCAwMxI0bN6pczieffCJen52dDRcXl1qoLRER0Z3HoftEREREREREjQh79ImIiIiIiIgaEQb6RERERERERI0IA30iIiIiIiKiRoSBPhEREREREVEjwkCfiIiIiIiIqBFhoE9ERERERETUiDDQJyIiIiIiImpEGOgTERERERERNSIM9ImIiIiIiIgaEQb6RERERERERI3I/wEcVAGPFqHA1AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Gamma-ray light curve comparison with time integration and residuals\n", "\n", "# TARDIS light curve integration - use full energy range\n", "tardis_frequencies = (tardis_energies / const.h).to(u.Hz)\n", "tardis_gamma_luminosity_density = np.trapezoid(\n", " tardis_flux, tardis_frequencies, axis=0\n", ")\n", "\n", "# Summa et al. 2013 light curve integration - use full energy range\n", "summa2013_frequencies = (summa2013_energies / const.h).to(u.Hz)\n", "summa2013_gamma_luminosity_density = np.trapezoid(\n", " summa2013_flux, summa2013_frequencies, axis=0\n", ")\n", "\n", "# Time integration of gamma-ray luminosity\n", "tardis_gamma_luminosity = (\n", " tardis_gamma_luminosity_density / flux_conversion\n", ").to(u.erg / u.s)\n", "summa2013_gamma_luminosity = (\n", " summa2013_gamma_luminosity_density / flux_conversion\n", ").to(u.erg / u.s)\n", "\n", "# Integrate over time using trapezoidal rule\n", "tardis_total_energy = np.trapezoid(\n", " tardis_gamma_luminosity, tardis_times_explosion.to(u.s)\n", ")\n", "summa2013_total_energy = np.trapezoid(\n", " summa2013_gamma_luminosity, summa2013_times_explosion.to(u.s)\n", ")\n", "\n", "# Calculate fractional difference (not percentage)\n", "fractional_difference = (\n", " tardis_total_energy - summa2013_total_energy\n", ") / summa2013_total_energy\n", "\n", "# Get energy ranges for legend\n", "tardis_energy_min = tardis_energies.min()\n", "tardis_energy_max = tardis_energies.max()\n", "summa2013_energy_min = summa2013_energies.to(u.keV).min()\n", "summa2013_energy_max = summa2013_energies.to(u.keV).max()\n", "\n", "# Create figure with two subplots using shared x-axis\n", "fig, (ax1, ax2) = plt.subplots(\n", " 2,\n", " 1,\n", " figsize=(12, 10),\n", " sharex=True,\n", " gridspec_kw={\"height_ratios\": [3, 1], \"hspace\": 0.05},\n", ")\n", "\n", "# Top panel: Main light curve plot\n", "ax1.plot(\n", " tardis_times_explosion,\n", " tardis_gamma_luminosity_density,\n", " \"r-\",\n", " linewidth=3,\n", " label=f\"TARDIS HE ({tardis_energy_min:.0f} - {tardis_energy_max:.0f})\",\n", " alpha=0.8,\n", ")\n", "ax1.plot(\n", " summa2013_times_explosion,\n", " summa2013_gamma_luminosity_density,\n", " \"b--\",\n", " linewidth=3,\n", " label=f\"Summa et al. 2013 ({summa2013_energy_min:.1f} - {summa2013_energy_max:.1f})\",\n", " alpha=0.8,\n", ")\n", "\n", "ax1.set_ylabel(\n", " f\"$\\\\gamma$-ray luminosity [{tardis_gamma_luminosity_density.unit:latex_inline}]\",\n", " fontsize=14,\n", ")\n", "ax1.set_title(\n", " r\"$\\gamma$-Ray Light Curve: TARDIS vs Summa et al. 2013\", fontsize=16\n", ")\n", "ax1.legend(fontsize=12, loc=\"center right\")\n", "ax1.grid(True, alpha=0.3)\n", "# X-axis labels handled by shared axis\n", "\n", "# Calculate residuals for bottom panel\n", "summa2013_interp_func = interp1d(\n", " summa2013_times_explosion.value,\n", " summa2013_gamma_luminosity_density.value,\n", " kind=\"linear\",\n", " bounds_error=False,\n", " fill_value=np.nan,\n", ")\n", "summa2013_interpolated = (\n", " summa2013_interp_func(tardis_times_explosion.value)\n", " * summa2013_gamma_luminosity_density.unit\n", ")\n", "fractional_residuals = (\n", " tardis_gamma_luminosity_density - summa2013_interpolated\n", ") / summa2013_interpolated\n", "\n", "# Bottom panel: Residual plot\n", "ax2.plot(\n", " tardis_times_explosion, fractional_residuals, \"g-\", linewidth=2, alpha=0.8\n", ")\n", "ax2.axhline(y=0, color=\"k\", linestyle=\"--\", alpha=0.5)\n", "ax2.set_xlabel(\n", " f\"Time [{tardis_times_explosion.unit:latex_inline}]\", fontsize=14\n", ")\n", "ax2.set_ylabel(\"Residual\", fontsize=12)\n", "ax2.grid(True, alpha=0.3)\n", "ax2.set_ylim(-0.2, 0.2)\n", "# Add integration info text box\n", "integration_info = (\n", " f\"Time Integration: TARDIS {tardis_total_energy:.2e}, \"\n", " f\"Summa2013 {summa2013_total_energy:.2e}, \"\n", " f\"Frac. diff.: {fractional_difference:.3f}\"\n", ")\n", "\n", "ax1.text(\n", " 0.02,\n", " 0.98,\n", " integration_info,\n", " transform=ax1.transAxes,\n", " fontsize=11,\n", " verticalalignment=\"top\",\n", " bbox=dict(boxstyle=\"round,pad=0.3\", facecolor=\"lightblue\", alpha=0.8),\n", ")\n", "\n", "plt.tight_layout()\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "35c59b45", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "47ba3541", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "tardis-devel", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.3" } }, "nbformat": 4, "nbformat_minor": 5 }