Source code for tardis.energy_input.gamma_ray_channel

import logging
import numpy as np
import pandas as pd
import astropy.units as u
import radioactivedecay as rd

from tardis.energy_input.util import KEV2ERG

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)


[docs] def create_isotope_dicts(raw_isotope_abundance, cell_masses): """ Function to create a dictionary of isotopes for each shell with their masses. Parameters ---------- raw_isotope_abundance : pd.DataFrame isotope abundance in mass fractions. cell_masses : numpy.ndarray shell masses in units of g Returns ------- isotope_dicts : Dict dictionary of isotopes for each shell with their ``masses``. Each value is abundance * cell masses. For eg: {0: {'Ni56': 0.1, 'Fe52': 0.2, 'Cr48': 0.3}, {1: {'Ni56': 0.1, 'Fe52': 0.2, 'Cr48': 0.3}} etc """ isotope_dicts = {} for i in range(len(raw_isotope_abundance.columns)): isotope_dicts[i] = {} for ( atomic_number, mass_number, ), abundances in raw_isotope_abundance.iterrows(): nuclear_symbol = f"{rd.utils.Z_to_elem(atomic_number)}{mass_number}" isotope_dicts[i][nuclear_symbol] = ( abundances[i] * cell_masses[i].to(u.g).value ) return isotope_dicts
[docs] def create_inventories_dict(isotope_dict): """Function to create dictionary of inventories for each shell Parameters ---------- isotope_dict : Dict dictionary of isotopes for each shell with their ``masses``. Returns ------- inv : Dict dictionary of inventories for each shell {0: <radioactivedecay.inventory.Inventory object at 0x7f8b1c1b3d90>, 1: <radioactivedecay.inventory.Inventory object at 0x7f8b1c1b3d90>} """ inventories = {} for shell, isotopes in isotope_dict.items(): inventories[shell] = rd.Inventory(isotopes, "g") return inventories
[docs] def calculate_total_decays(inventories, time_delta): """Function to create inventories of isotope for the entire simulation time. Parameters ---------- inventories : Dict dictionary of inventories for each shell time_end : float End time of simulation in days. Returns ------- cumulative_decay_df : pd.DataFrame total decays for x g of isotope for time 't' """ time_delta = u.Quantity(time_delta, u.s) total_decays = {} for shell, inventory in inventories.items(): total_decays[shell] = inventory.cumulative_decays(time_delta.value) flattened_dict = {} for shell, isotope_dict in total_decays.items(): for isotope, num_of_decays in isotope_dict.items(): new_key = isotope.replace("-", "") flattened_dict[(shell, new_key)] = num_of_decays indices = pd.MultiIndex.from_tuples( flattened_dict.keys(), names=["shell_number", "isotope"] ) cumulative_decay_df = pd.DataFrame( list(flattened_dict.values()), index=indices, columns=["number_of_decays"], ) return cumulative_decay_df
[docs] def create_isotope_decay_df(cumulative_decay_df, gamma_ray_lines): """ Function to create a dataframe of isotopes for each shell with their decay mode, number of decays, radiation type, radiation energy and radiation intensity. Parameters ---------- cumulative_decay_df : pd.DataFrame total decays for x g of isotope for time 't' gamma_ray_lines : pd.DataFrame gamma ray lines from nndc stored as a pandas dataframe. Returns ------- isotope_decay_df : pd.DataFrame dataframe of isotopes for each shell with their decay mode, number of decays, radiation type, radiation energy and radiation intensity. """ gamma_ray_lines = gamma_ray_lines.rename_axis( "isotope" ) # renaming "Isotope" in nndc to "isotope" gamma_ray_lines.drop(columns=["A", "Z"]) gamma_ray_lines_df = gamma_ray_lines[ ["Decay Mode", "Radiation", "Rad Energy", "Rad Intensity"] ] # selecting from existing dataframe columns = [ "decay_mode", "radiation", "radiation_energy_keV", "radiation_intensity", ] gamma_ray_lines_df.columns = columns isotope_decay_df = pd.merge( cumulative_decay_df.reset_index(), gamma_ray_lines_df.reset_index(), on=["isotope"], ) isotope_decay_df = isotope_decay_df.set_index(["shell_number", "isotope"]) isotope_decay_df["decay_mode"] = isotope_decay_df["decay_mode"].astype( "category" ) isotope_decay_df["radiation"] = isotope_decay_df["radiation"].astype( "category" ) isotope_decay_df["energy_per_channel_keV"] = ( isotope_decay_df["radiation_intensity"] / 100.0 * isotope_decay_df["radiation_energy_keV"] ) isotope_decay_df["decay_energy_keV"] = ( isotope_decay_df["energy_per_channel_keV"] * isotope_decay_df["number_of_decays"] ) isotope_decay_df["decay_energy_erg"] = ( isotope_decay_df["decay_energy_keV"] * KEV2ERG ) return isotope_decay_df