Source code for tardis.visualization.widgets.line_info
"""Class to create and display Line Info Widget."""
import re
from astropy import units as u
import numpy as np
import pandas as pd
from plotly import graph_objects as go
from plotly.callbacks import BoxSelector
import ipywidgets as ipw
from tardis.analysis import LastLineInteraction
from tardis.util.base import (
species_tuple_to_string,
species_string_to_tuple,
is_notebook,
)
from tardis.visualization.widgets.util import (
create_table_widget,
TableSummaryLabel,
)
from tardis.visualization import plot_util as pu
[docs]
class LineInfoWidget:
"""
Widget to explore atomic lines that produced features in the simulated spectrum.
It allows selection of a wavelength range in the spectrum to display a
table giving the fraction of packets that experienced their last
interaction with each species. Using toggle buttons, users can specify
whether to filter the selected range by emitted or absorbed wavelengths
of packets. Clicking on a row in the fractional species interactions table
shows packet counts for each last line interaction of the selected species,
which can be grouped in several ways using the dropdown menu.
"""
FILTER_MODES = ("packet_out_nu", "packet_in_nu")
FILTER_MODES_DESC = ("Emitted Wavelength", "Absorbed Wavelength")
GROUP_MODES = ("both", "exc", "de-exc")
GROUP_MODES_DESC = (
"Both excitation line (absorption) and de-excitation line (emission)",
"Only excitation line (absorption)",
"Only de-excitation line (emission)",
)
COLORS = {"selection_area": "lightpink", "selection_border": "salmon"}
def __init__(
self,
lines_data,
line_interaction_analysis,
spectrum_wavelength,
spectrum_luminosity_density_lambda,
virt_spectrum_wavelength,
virt_spectrum_luminosity_density_lambda,
):
"""
Initialize the LineInfoWidget with line interaction and spectrum data.
Parameters
----------
lines_data : pd.DataFrame
Data about the atomic lines present in simulation model's plasma
line_interaction_analysis : dict of tardis.analysis.LastLineInteraction
Dictionary in which keys are the FILTER_MODES and values are the
LastLineInteraction objects initialized with corresponding modes
spectrum_wavelength : astropy.Quantity
Wavelength values of a real spectrum, having unit of Angstrom
spectrum_luminosity_density_lambda : astropy.Quantity
Luminosity density lambda values of a real spectrum, having unit
of (erg/s)/Angstrom
virt_spectrum_wavelength : astropy.Quantity
Wavelength values of a virtual spectrum, having unit of Angstrom
virt_spectrum_luminosity_density_lambda : astropy.Quantity
Luminosity density lambda values of a virtual spectrum, having unit
of (erg/s)/Angstrom
"""
self.lines_data = lines_data
self.line_interaction_analysis = line_interaction_analysis
# Widgets ------------------------------------------------
max_rows_option = {"maxVisibleRows": 9}
self.species_interactions_table = create_table_widget(
data=self.get_species_interactions(None),
col_widths=[35, 65],
table_options=max_rows_option,
)
line_counts_col_widths = [75, 25]
self.last_line_counts_table = create_table_widget(
data=self.get_last_line_counts(None),
col_widths=line_counts_col_widths,
table_options=max_rows_option,
)
self.total_packets_label = TableSummaryLabel(
target_table=self.last_line_counts_table,
table_col_widths=line_counts_col_widths,
label_key="Total Packets",
label_value=0,
)
self.figure_widget = self.plot_spectrum(
spectrum_wavelength,
spectrum_luminosity_density_lambda,
virt_spectrum_wavelength,
virt_spectrum_luminosity_density_lambda,
)
self.filter_mode_buttons = ipw.ToggleButtons(
options=self.FILTER_MODES_DESC, index=0
)
self.group_mode_dropdown = ipw.Dropdown(
options=self.GROUP_MODES_DESC, index=0
)
[docs]
@classmethod
def from_simulation(cls, sim):
"""
Create an instance of LineInfoWidget from a TARDIS simulation object.
Parameters
----------
sim : tardis.simulation.Simulation
TARDIS Simulation object produced by running a simulation
Returns
-------
LineInfoWidget object
"""
spectrum_solver = sim.spectrum_solver
return cls(
lines_data=sim.plasma.lines.reset_index().set_index("line_id"),
line_interaction_analysis={
filter_mode: LastLineInteraction.from_simulation(
sim, filter_mode
)
for filter_mode in cls.FILTER_MODES
},
spectrum_wavelength=spectrum_solver.spectrum_real_packets.wavelength,
spectrum_luminosity_density_lambda=spectrum_solver.spectrum_real_packets.luminosity_density_lambda.to(
"erg/(s AA)"
),
virt_spectrum_wavelength=spectrum_solver.spectrum_virtual_packets.wavelength,
virt_spectrum_luminosity_density_lambda=spectrum_solver.spectrum_virtual_packets.luminosity_density_lambda.to(
"erg/(s AA)"
),
)
[docs]
def get_species_interactions(
self, wavelength_range, filter_mode=FILTER_MODES[0]
):
"""
Get fractional species interactions in specified wavelength range.
Fractional species interactions means fraction of packets present in
the specified wavelength range which experienced their last interaction
with a species. The packets to consider are filtered by the specified
filter mode.
Parameters
----------
wavelength_range : list-like or None
A list of two float values to specify the wavelength range - first
for the range start and second for the range end. None specifies
that no wavelength range is selected and will return empty dataframe
filter_mode : str, optional
Filter mode of the LastLineInteraction object to use for filtering
the selected wavelength range (more details in Notes section).
Allowed values are given by the class variable :code:`FILTER_MODES`
(default value is :code:`FILTER_MODES[0]`)
Returns
-------
pandas.DataFrame
Dataframe containing species symbols and corresponding fractions
of packets interacting with them
Notes
-----
This method depends on tardis.analysis.LastLineInteraction object for
doing computations. So there is a member variable in this class -
:code:`line_interaction_analysis` which is a dictionary of such objects
(each of them differ in how they filter the selected wavelength range).
Thus we have to specify which object to use by specifying the
filter_mode parameter.
"""
if wavelength_range:
self.line_interaction_analysis[filter_mode].wavelength_start = (
wavelength_range[0] * u.AA
)
self.line_interaction_analysis[filter_mode].wavelength_end = (
wavelength_range[1] * u.AA
)
# Obtain species group from last_line_in dataframe
selected_species_group = self.line_interaction_analysis[
filter_mode
].last_line_in.groupby(["atomic_number", "ion_number"])
if selected_species_group.groups:
selected_species_symbols = [
species_tuple_to_string(item)
for item in selected_species_group.groups.keys()
]
# Normalize each group's count to find fractions of interactions
fractional_species_interactions = (
selected_species_group.size()
/ self.line_interaction_analysis[
filter_mode
].last_line_in.shape[0]
)
else: # No species could be selected in specified wavelength_range
# qgrid cannot show empty dataframe properly,
# so create one row with empty strings
selected_species_symbols = [""]
fractional_species_interactions = pd.Series([""])
else: # wavelength_range is None
selected_species_symbols = [""]
fractional_species_interactions = pd.Series([""])
fractional_species_interactions.index = pd.Index(
selected_species_symbols, name="Species"
)
fractional_species_interactions.name = "Fraction of packets interacting"
return fractional_species_interactions.sort_values(
ascending=False
).to_frame()
[docs]
def get_last_line_counts(
self,
selected_species,
filter_mode=FILTER_MODES[0],
group_mode=GROUP_MODES[0],
):
"""
Get packet counts of each last line interaction of a species.
Parameters
----------
selected_species : str
Valid symbol of a species (e.g Si II) selected from the species
data returned by :code:`get_species_interactions` (see Notes section)
filter_mode : str, optional
Filter mode of the LastLineInteraction object to use for fetching
the data of last lines interacted (more details in Notes section).
Allowed values are given by the class variable :code:`FILTER_MODES`
(default value is :code:`FILTER_MODES[0]`)
group_mode : str, optional
Group mode to use for grouping last line interactions by excitation
lines, de-excitation lines or both. Allowed values are given by the
class variable :code:`GROUP_MODES` (default value is
:code:`GROUP_MODES[0]` i.e. both)
Returns
-------
pd.DataFrame
DataFrame containing last line interactions and corresponding
packet counts.
Notes
-----
This method depends on tardis.analysis.LastLineInteraction object for
doing computations. So there is a member variable in this class -
:code:`line_interaction_analysis` which is a dictionary of such objects
(each of them differ in how they filter the selected wavelength range).
Thus we have to specify which object to use by specifying the
filter_mode parameter.
This method should always be called after calling
:code:`get_species_interactions` method which sets a wavelength
range on LastLineInteraction object. So selected_species should
be one present within that range, otherwise it will result an error.
"""
if selected_species:
selected_species_tuple = species_string_to_tuple(selected_species)
try:
# Get selected species' rows from last_line_in dataframe
current_last_lines_in = (
self.line_interaction_analysis[filter_mode]
.last_line_in.xs(
key=selected_species_tuple,
level=["atomic_number", "ion_number"],
drop_level=False,
)
.reset_index()
)
# Get selected species' rows from last_line_out dataframe
current_last_lines_out = (
self.line_interaction_analysis[filter_mode]
.last_line_out.xs(
key=selected_species_tuple,
level=["atomic_number", "ion_number"],
drop_level=False,
)
.reset_index()
)
assert (
current_last_lines_in.empty & current_last_lines_out.empty
== False
)
except (KeyError, AssertionError): # selected_species is invalid
allowed_species = [
species_tuple_to_string(species)
for species in self.line_interaction_analysis[filter_mode]
.last_line_in.groupby(["atomic_number", "ion_number"])
.groups.keys()
]
raise ValueError(
"Invalid value of selected_species, it must be one present "
"within the currently selected wavelength range in your "
f"LineInfoWidget instance, which are {allowed_species}"
)
last_line_interaction_string = []
interacting_packets_count = []
if group_mode == "both":
# Group by both exc. line ids and de-exc. line ids
current_last_lines_in[
"line_id_out"
] = current_last_lines_out.line_id
grouped_line_interactions = current_last_lines_in.groupby(
["line_id", "line_id_out"]
)
# Iterate over each group's key and size and append them to list
for (
line_id,
count,
) in grouped_line_interactions.size().items():
current_line_in = self.lines_data.loc[line_id[0]]
current_line_out = self.lines_data.loc[line_id[1]]
last_line_interaction_string.append(
f"exc. {int(current_line_in.level_number_lower):02d}-"
f"{int(current_line_in.level_number_upper):02d} "
f"({current_line_in.wavelength:.2f} A) "
f"de-exc. {int(current_line_out.level_number_upper):02d}-"
f"{int(current_line_out.level_number_lower):02d} "
f"({current_line_out.wavelength:.2f} A)"
)
interacting_packets_count.append(count)
elif group_mode == "exc":
grouped_line_interactions = current_last_lines_in.groupby(
"line_id"
)
# Iterate over each group's key and size and append them to list
for (
line_id,
count,
) in grouped_line_interactions.size().items():
current_line_in = self.lines_data.loc[line_id]
last_line_interaction_string.append(
f"exc. {int(current_line_in.level_number_lower):02d}-"
f"{int(current_line_in.level_number_upper):02d} "
f"({current_line_in.wavelength:.2f} A)"
)
interacting_packets_count.append(count)
elif group_mode == "de-exc":
grouped_line_interactions = current_last_lines_out.groupby(
"line_id"
)
# Iterate over each group's key and size and append them to list
for (
line_id,
count,
) in grouped_line_interactions.size().items():
current_line_out = self.lines_data.loc[line_id]
last_line_interaction_string.append(
f"de-exc. {int(current_line_out.level_number_upper):02d}-"
f"{int(current_line_out.level_number_lower):02d} "
f"({current_line_out.wavelength:.2f} A)"
)
interacting_packets_count.append(count)
else:
raise ValueError(
"Invalid value passed to group_mode argument. "
f"Allowed values are {self.GROUP_MODES}"
)
else: # species_selected is None
# qgrid cannot show empty dataframe properly,
# so create one row with empty strings
interacting_packets_count = [""]
last_line_interaction_string = [""]
last_line_counts = pd.Series(interacting_packets_count)
last_line_counts.name = "No. of packets"
last_line_counts.index = pd.Index(
last_line_interaction_string, name="Last Line Interaction"
)
return last_line_counts.sort_values(ascending=False).to_frame()
[docs]
@staticmethod
def get_middle_half_edges(arr):
"""
Get edges of the middle half range of an array.
Parameters
----------
arr : np.array
Returns
-------
list
"""
arr = np.sort(arr)
return [
(arr[-1] - arr[0]) / 4 + arr[1],
(arr[-1] - arr[0]) * 3 / 4 + arr[1],
]
[docs]
def plot_spectrum(
self,
wavelength,
luminosity_density_lambda,
virt_wavelength,
virt_luminosity_density_lambda,
):
"""
Produce a plotly figure widget by plotting the spectrum of model.
Parameters
----------
wavelength : astropy.Quantity
Wavelength values of a real spectrum, having unit of Angstrom
luminosity_density_lambda : astropy.Quantity
Luminosity density lambda values of a real spectrum, having unit
of (erg/s)/Angstrom
virt_wavelength : astropy.Quantity
Wavelength values of a virtual spectrum, having unit of Angstrom
virt_luminosity_density_lambda : astropy.Quantity
Luminosity density lambda values of a virtual spectrum, having unit
of (erg/s)/Angstrom
Returns
-------
plotly.graph_objects.FigureWidget
"""
# Initially zoomed range in rangeslider should be middle half of spectrum
initial_zoomed_range = self.get_middle_half_edges(wavelength.value)
# The scatter point should be a middle point in spectrum otherwise
# the extra padding around it will be oddly visible when near the edge
scatter_point_idx = pu.get_mid_point_idx(wavelength.value)
return go.FigureWidget(
[
go.Scatter(
x=wavelength,
y=luminosity_density_lambda,
name="Real packets",
),
go.Scatter(
x=virt_wavelength,
y=virt_luminosity_density_lambda,
name="Virtual packets",
),
# Hide a one point scatter trace, to bring boxselect in modebar
go.Scatter(
x=wavelength[scatter_point_idx],
y=luminosity_density_lambda[scatter_point_idx],
mode="markers",
marker=dict(opacity=0),
showlegend=False,
),
],
layout=go.Layout(
title="Spectrum",
xaxis=dict(
title=pu.axis_label_in_latex("Wavelength", wavelength.unit),
exponentformat="none",
rangeslider=dict(visible=True),
range=initial_zoomed_range,
),
yaxis=dict(
title=pu.axis_label_in_latex(
"Luminosity",
luminosity_density_lambda.unit,
),
exponentformat="e",
fixedrange=False,
),
dragmode="select",
selectdirection="h",
height=400,
margin=dict(t=50, b=60),
),
)
def _update_species_interactions(self, wavelength_range, filter_mode):
"""
Update data in species_interactions_table.
The parameters are exact same as that of :code:`get_species_interactions`.
Besides, it also does selection of 1st row in this table to trigger
update in last_line_counts_table.
"""
# Update data in species_interactions_table
self.species_interactions_table.df = self.get_species_interactions(
wavelength_range, filter_mode
)
# Get index of 0th row in species_interactions_table
species0 = self.species_interactions_table.df.index[0]
# Also update last_line_counts_table by triggering its event listener
if self.species_interactions_table.get_selected_rows() == [0]:
# Listener won't trigger if last row selected in
# species_interactions_table was also 0th, so unselect the rows
self.species_interactions_table.change_selection([])
# Select 0th row in this table to trigger _update_last_line_counts
self.species_interactions_table.change_selection([species0])
def _add_selection_box(self, selector):
"""
Draw a shape on plotly figure widget to represent the selection.
Parameters
----------
selector : plotly.callbacks.BoxSelector
The object containing data about current selection made on plot
(x-axis and y-axis range of selection box)
"""
self.figure_widget.layout.shapes = [
dict(
type="rect",
xref="x",
yref="y",
x0=selector.xrange[0],
y0=selector.yrange[0],
x1=selector.xrange[1],
y1=selector.yrange[1],
line=dict(
color=self.COLORS["selection_border"],
width=1,
),
fillcolor=self.COLORS["selection_area"],
opacity=0.5,
)
]
def _update_last_line_counts(self, species, filter_mode, group_mode):
"""
Update data in last_line_counts_table and associated total_packets_label.
The parameters are exact same as that of :code:`get_last_line_counts`.
"""
# Update data in line counts table
self.last_line_counts_table.df = self.get_last_line_counts(
species, filter_mode, group_mode
)
# Update its corresponding total_packets_label
if species:
self.total_packets_label.update_and_resize(
self.last_line_counts_table.df.iloc[:, 0].sum()
)
else: # Line counts table will be empty
self.total_packets_label.update_and_resize(0)
def _spectrum_selection_handler(self, trace, points, selector):
"""
Event handler for selection of spectrum in plotly figure widget.
This method has the expected signature of the callback function passed
to :code:`on_selection` method of a plotly trace as explained in
`their docs <https://plotly.com/python-api-reference/generated/plotly.html#plotly.basedatatypes.BaseTraceType.on_selection>`_.
"""
if isinstance(selector, BoxSelector):
self._add_selection_box(selector)
self._update_species_interactions(
selector.xrange,
self.FILTER_MODES[self.filter_mode_buttons.index],
)
def _filter_mode_toggle_handler(self, change):
"""
Event handler for toggle in filter_mode_buttons.
This method has the expected signature of the callback function
passed to :code:`observe` method of ipywidgets as explained in
`their docs <https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Events.html#Signatures>`_.
"""
try:
wavelength_range = [
self.figure_widget.layout.shapes[0][x] for x in ("x0", "x1")
]
except IndexError: # No selection is made on figure widget
return
self._update_species_interactions(
wavelength_range,
self.FILTER_MODES[self.filter_mode_buttons.index],
)
def _species_intrctn_selection_handler(self, event, qgrid_widget):
"""
Event handler for selection in species_interactions_table.
This method has the expected signature of the function passed to
:code:`handler` argument of :code:`on_selection` method of qgrid.QgridWidget
as explained in `their docs <https://qgrid.readthedocs.io/en/latest/#qgrid.QgridWidget.on>`_.
"""
# Don't execute function if no row was selected implicitly (by api)
if event["new"] == [] and event["source"] == "api":
return
# Get species from the selected row in species_interactions_table
species_selected = self.species_interactions_table.df.index[
event["new"][0]
]
if species_selected == "": # when species_interactions_table is empty
species_selected = None
self._update_last_line_counts(
species_selected,
self.FILTER_MODES[self.filter_mode_buttons.index],
self.GROUP_MODES[self.group_mode_dropdown.index],
)
def _group_mode_dropdown_handler(self, change):
"""
Event handler for selection in group_mode_dropdown.
This method has the expected signature of the callback function
passed to :code:`observe` method of ipywidgets as explained in
`their docs <https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Events.html#Signatures>`_.
"""
try:
selected_row_idx = (
self.species_interactions_table.get_selected_rows()[0]
)
species_selected = self.species_interactions_table.df.index[
selected_row_idx
]
except IndexError: # No row is selected in species_interactions_table
return
self._update_last_line_counts(
species_selected,
self.FILTER_MODES[self.filter_mode_buttons.index],
self.GROUP_MODES[self.group_mode_dropdown.index],
)
[docs]
@staticmethod
def ui_control_description(text):
"""Get description label of a UI control with increased font size."""
return ipw.HTML(f"<span style='font-size: 1.15em;'>{text}:</span>")
[docs]
def display(self):
"""
Display the fully-functional line info widget.
It puts together all component widgets nicely together and enables
interaction between all the components.
Returns
-------
ipywidgets.Box
Line info widget containing all component widgets
"""
if not is_notebook():
print("Please use a notebook to display the widget")
else:
# Set widths of widgets
self.species_interactions_table.layout.width = "350px"
self.last_line_counts_table.layout.width = "450px"
self.total_packets_label.update_and_resize(0)
self.group_mode_dropdown.layout.width = "auto"
# Attach event listeners to widgets
spectrum_trace = self.figure_widget.data[0]
spectrum_trace.on_selection(self._spectrum_selection_handler)
self.filter_mode_buttons.observe(
self._filter_mode_toggle_handler, names="index"
)
self.species_interactions_table.on(
"selection_changed", self._species_intrctn_selection_handler
)
self.group_mode_dropdown.observe(
self._group_mode_dropdown_handler, names="index"
)
selection_box_symbol = (
"<span style='display: inline-block; "
f"background-color: {self.COLORS['selection_area']}; "
f"border: 1px solid {self.COLORS['selection_border']}; "
"width: 0.8em; height: 1.2em; vertical-align: middle;'></span>"
)
table_container_left = ipw.VBox(
[
self.ui_control_description(
"Filter selected wavelength range "
f"( {selection_box_symbol} ) by"
),
self.filter_mode_buttons,
self.species_interactions_table,
],
layout=dict(margin="0px 15px"),
)
table_container_right = ipw.VBox(
[
self.ui_control_description("Group packet counts by"),
self.group_mode_dropdown,
self.last_line_counts_table,
self.total_packets_label.widget,
],
layout=dict(margin="0px 15px"),
)
return ipw.VBox(
[
self.figure_widget,
ipw.Box(
[
table_container_left,
table_container_right,
],
layout=dict(
display="flex",
align_items="flex-start",
justify_content="center",
height="420px",
),
),
]
)