tardis.visualization.tools.sdec_plot module¶
Spectral element DEComposition (SDEC) Plot for TARDIS simulation models.
This plot is a spectral diagnostics plot similar to those originally proposed by M. Kromer (see, for example, Kromer et al. 2013, figure 4).
- class tardis.visualization.tools.sdec_plot.SDECPlotter[source]¶
 Bases:
objectPlotting interface for Spectral element DEComposition (SDEC) Plot.
It performs necessary calculations to generate SDEC Plot for a simulation model, and allows to plot it in matplotlib and plotly.
Initialize the SDECPlotter with required data of simulation model.
- classmethod from_hdf(hdf_fpath)[source]¶
 Create an instance of SDECPlotter from a simulation HDF file.
- Parameters:
 - hdf_fpathstr
 Valid path to the HDF file where simulation is saved
- packets_mode{‘virtual’, ‘real’}, optional
 Mode of packets to be considered (default: ‘virtual’)
- Returns:
 - SDECPlotter
 
- classmethod from_simulation(sim)[source]¶
 Create an instance of SDECPlotter from a TARDIS simulation object.
- Parameters:
 - simtardis.simulation.Simulation
 TARDIS Simulation object produced by running a simulation
- Returns:
 - SDECPlotter
 
- generate_plot_mpl(packets_mode='virtual', packet_wvl_range=None, distance=None, observed_spectrum=None, show_modeled_spectrum=True, ax=None, figsize=(12, 7), cmapname='jet', nelements=None, species_list=None, blackbody_photosphere=True)[source]¶
 Generate Spectral element DEComposition (SDEC) Plot using matplotlib.
- Parameters:
 - packets_mode{‘virtual’, ‘real’}, optional
 Mode of packets to be considered, either real or virtual. Default value is ‘virtual’
- packet_wvl_rangeastropy.Quantity or None, optional
 Wavelength range to restrict the analysis of escaped packets. It should be a quantity having units of Angstrom, containing two values - lower lambda and upper lambda i.e. [lower_lambda, upper_lambda] * u.AA. Default value is None
- distanceastropy.Quantity or None, optional
 Distance used to calculate flux instead of luminosity in the plot. It should have a length unit like m, Mpc, etc. Default value is None
- observed_spectrumtuple or list of astropy.Quantity, optional
 Option to plot an observed spectrum in the SDEC plot. If given, the first element should be the wavelength and the second element should be flux, i.e. (wavelength, flux). The assumed units for wavelength and flux are angstroms and erg/(angstroms * s * cm^2), respectively. Default value is None.
- show_modeled_spectrumbool, optional
 Whether to show modeled spectrum in SDEC Plot. Default value is True
- axmatplotlib.axes._subplots.AxesSubplot or None, optional
 Axis on which to create plot. Default value is None which will create plot on a new figure’s axis.
- figsizetuple, optional
 Size of the matplotlib figure to display. Default value is (12, 7)
- cmapnamestr, optional
 Name of matplotlib colormap to be used for showing elements. Default value is “jet”
- nelements: int
 Number of elements to include in plot. Determined by the largest contribution to total luminosity absorbed and emitted. Other elements are shown in silver. Default value is None, which displays all elements
- species_list: list of strings or None
 list of strings containing the names of species that should be included in the SDEC plots. Must be given in Roman numeral format. Can include specific ions, a range of ions, individual elements, or any combination of these: e.g. [‘Si II’, ‘Ca II’, ‘C’, ‘Fe I-V’]
- blackbody_photosphere: bool
 Whether to include the blackbody photosphere in the plot. Default value is True
- Returns:
 - matplotlib.axes._subplots.AxesSubplot
 Axis on which SDEC Plot is created
- generate_plot_ply(packets_mode='virtual', packet_wvl_range=None, distance=None, observed_spectrum=None, show_modeled_spectrum=True, fig=None, graph_height=600, cmapname='jet', nelements=None, species_list=None, blackbody_photosphere=True)[source]¶
 Generate interactive Spectral element DEComposition (SDEC) Plot using plotly.
- Parameters:
 - packets_mode{‘virtual’, ‘real’}, optional
 Mode of packets to be considered, either real or virtual. Default value is ‘virtual’
- packet_wvl_rangeastropy.Quantity or None, optional
 Wavelength range to restrict the analysis of escaped packets. It should be a quantity having units of Angstrom, containing two values - lower lambda and upper lambda i.e. [lower_lambda, upper_lambda] * u.AA. Default value is None
- distanceastropy.Quantity or None, optional
 Distance used to calculate flux instead of luminosity in the plot. It should have a length unit like m, Mpc, etc. Default value is None
- observed_spectrumtuple or list of astropy.Quantity, optional
 Option to plot an observed spectrum in the SDEC plot. If given, the first element should be the wavelength and the second element should be flux, i.e. (wavelength, flux). The assumed units for wavelength and flux are angstroms and erg/(angstroms * s * cm^2), respectively. Default value is None.
- show_modeled_spectrumbool, optional
 Whether to show modeled spectrum in SDEC Plot. Default value is True
- figplotly.graph_objs._figure.Figure or None, optional
 Figure object on which to create plot. Default value is None which will create plot on a new Figure object.
- graph_heightint, optional
 Height (in px) of the plotly graph to display. Default value is 600
- cmapnamestr, optional
 Name of the colormap to be used for showing elements. Default value is “jet”
- nelements: int
 Number of elements to include in plot. Determined by the largest contribution to total luminosity absorbed and emitted. Other elements are shown in silver. Default value is None, which displays all elements
- species_list: list of strings or None
 list of strings containing the names of species that should be included in the SDEC plots. Must be given in Roman numeral format. Can include specific ions, a range of ions, individual elements, or any combination of these: e.g. [‘Si II’, ‘Ca II’, ‘C’, ‘Fe I-V’]
- blackbody_photosphere: bool
 Whether to include the blackbody photosphere in the plot. Default value is True
- Returns:
 - plotly.graph_objs._figure.Figure
 Figure object on which SDEC Plot is created
- process_luminosity_dataframe(df, keys_to_exclude, other_column_position=0)[source]¶
 Process a luminosity DataFrame by aggregating specified columns into an ‘other’ column.
- Parameters:
 - dfpandas.DataFrame
 The DataFrame containing luminosity data to be processed.
- keys_to_excludelist of str
 Column names in
dfwhose data should be summed into the ‘other’ column and removed.- other_column_positionint, optional
 The integer location (0-indexed) at which to insert the new ‘other’ column. Defaults to 0.
- Returns:
 - pandas.DataFrame
 A new DataFrame with the excluded columns summed into ‘other’ and removed from the original.