tardis.workflows.v_inner_solver module

class tardis.workflows.v_inner_solver.InnerVelocitySolverWorkflow(configuration, mean_optical_depth='rosseland', tau=None, csvy=False)[source]

Bases: SimpleTARDISWorkflow

A simple TARDIS workflow that runs a simulation to convergence

Parameters:
configurationConfiguration

Configuration object for the simulation

csvybool, optional

Set true if the configuration uses CSVY, by default False

TAU_TARGET = np.float64(-0.40546510810816444)
check_convergence(estimated_values)[source]

Check convergence status for a dict of estimated values

Parameters:
estimated_valuesdict

Estimates to check convergence

Returns:
bool

If convergence has occurred

estimate_v_inner()[source]

Compute the Rosseland Mean Optical Depth, Estimate location where v_inner makes t=2/3 (or target) Extrapolate with exponential fits

Need some way to return and inspect the optical depths for later logging

get_convergence_estimates()[source]

Compute convergence estimates from the transport state

Returns:
dict

Convergence estimates

EstimatedRadiationFieldProperties

Dilute radiation file and j_blues dataclass

print_mask(mask)[source]
property property_mask
reproject(array_one, mask_one, array_two, mask_two)[source]

Reprojects two sub_arrays defined by a set of masks onto an array where the masks of both objects are true

let A1, A2 be arrays of size gemetry.no_of_shells and

a1 = A1[mask_one], a2 = A2[mask_two]

find a1*, a2* s.t.

a1* = A1[mask_one & mask_two], a2* = A2[mask_one & mask_two]

this is equivalent to

a1* = A1[mask_one][mask_two[mask_one]] = a1[mask_two[mask_one]], a2* = A2[mask_two][mask_one[mask_two]] = a2[mask_one[mask_two]]

Parameters:
array1np.ndarray

A sub array of an array with the shape of a geometry property

mask_onenp.ndarray(bool)

Mask such that the parrent array accessed at this mask gives a1

array_twonp.ndarray

A sub array of an array with the shape of a geometry property

mask_twonp.ndarray(bool)

Mask such that the parrent array accessed at this mask gives a2

Returns:
array_one*

reprojection of array_one onto mask_one & mask_two

array_two*

reprojection of array_two onto mask_one & mask_two

reshape_store_plasma_state(executed_iterations)[source]

Reshapes the storage arrays in case convergence was reached before all specified iterations were executed.

Parameters:
executed_iterationsint

iteration index, i.e. number of iterations executed minus one!

run()[source]

Run the TARDIS simulation until convergence is reached

solve_plasma(estimated_radfield_properties, mask)[source]

Update the plasma solution with the new radiation field estimates

Parameters:
estimated_radfield_propertiesEstimatedRadiationFieldProperties

The radiation field properties to use for updating the plasma

radiation_field: tardis.plasma.radiation_field.RadiationField

Current radiation field object from the last iteration

Raises:
ValueError

If the plasma solver radiative rates type is unknown

solve_simulation_state(estimated_values)[source]

Update the simulation state with new inputs computed from previous iteration estimates.

Parameters:
estimated_valuesdict

Estimated from the previous iterations

Returns:
next_valuesdict

The next values assigned to the simulation state

store_plasma_state(i, num_active_shells, t_radiative, dilution_factor, electron_densities, t_inner, v_inner_boundary, tau_integ)[source]

Store current plasma information, including the velocity of the inner boundary and the Rosseland mean optical depth, used in iterated i.

Parameters:
iint

current iteration index (0 for the first)

num_active_shellsint

number of active shells

t_radastropy.units.Quantity

radiation temperature

dilution_factornp.ndarray

dilution factor

electron_densitiesnp.ndarray

electron density

t_innerastropy.units.Quantity

temperature of inner boundary

v_inner_boundaryastropy.units.Quantity

velocity of inner boundary

tau_integnp.ndarray

Rosseland mean optical depth