Source code for tardis.energy_input.gamma_ray_packet_source

import logging

import numpy as np
import pandas as pd

from tardis.energy_input.samplers import (
    PositroniumSampler,
)
from tardis.energy_input.transport.GXPacket import (
    GXPacketCollection,
)
from tardis.energy_input.util import (
    H_CGS_KEV,
    doppler_factor_3D_all_packets,
    get_random_unit_vectors,
)
from tardis.transport.montecarlo.packet_source import BasePacketSource

logger = logging.getLogger(__name__)

POSITRON_ANNIHILATION_LINE = 511.0
PARA_TO_ORTHO_RATIO = 0.25


[docs] class GammaRayPacketSource(BasePacketSource): def __init__( self, cumulative_decays_df: pd.DataFrame, isotope_decay_df: pd.DataFrame, positronium_fraction: float, inner_velocities: np.ndarray, outer_velocities: np.ndarray, times: np.ndarray, effective_times: np.ndarray, **kwargs, ) -> None: """ Initialize gamma ray packet source. Initializes a gamma ray packet source for creating gamma ray packets from radioactive decay data, including support for positronium formation. Parameters ---------- cumulative_decays_df : pd.DataFrame DataFrame containing cumulative decay data with columns including radiation type, decay energies, and multi-level indices for isotope, shell_number, and time_index. isotope_decay_df : pd.DataFrame DataFrame containing isotope decay data with decay constants and other isotope-specific parameters. positronium_fraction : float Fraction of positrons that form positronium (0.0 to 1.0). Used for modeling three-photon decay vs two-photon annihilation. inner_velocities : np.ndarray Array of inner shell velocities [cm/s] for each spatial shell. outer_velocities : np.ndarray Array of outer shell velocities [cm/s] for each spatial shell. times : np.ndarray Array of time steps [s] used in the simulation. effective_times : np.ndarray Array of effective time steps [s] accounting for simulation specifics. **kwargs Additional keyword arguments passed to the parent BasePacketSource class. Notes ----- This packet source generates gamma ray packets from radioactive decay events, with proper handling of: - Spatial distribution within shells - Time-dependent decay processes - Positronium formation and decay modes - Doppler effects from moving material """ self.cumulative_decays_df = cumulative_decays_df self.isotope_decay_df = isotope_decay_df self.positronium_fraction = positronium_fraction self.inner_velocities = inner_velocities self.outer_velocities = outer_velocities self.times = times self.effective_times = effective_times super().__init__(**kwargs)
[docs] def create_packet_mus(self, no_of_packets: int, *args, **kwargs): """ Create packet directional cosines. Creates packet directional cosines by calling the parent class method. This method is inherited from BasePacketSource. Parameters ---------- no_of_packets : int Number of packets for which to create directional cosines. *args Variable length argument list passed to parent method. **kwargs Arbitrary keyword arguments passed to parent method. Returns ------- The return value from the parent class create_packet_mus method. """ return super().create_packet_mus(no_of_packets, *args, **kwargs)
[docs] def create_packet_velocities(self, sampled_packets_df: pd.DataFrame) -> np.ndarray: """ Initialize random radial velocities for packets within shells. Generates random initial velocities for packets distributed within spherical shells using a uniform distribution in volume. Parameters ---------- sampled_packets_df : pd.DataFrame DataFrame where each row represents a packet, containing 'inner_velocity' and 'outer_velocity' columns for shell boundaries. Returns ------- np.ndarray Array of initial velocities [cm/s] with length equal to the number of packets in sampled_packets_df. Notes ----- Uses the cube root method to ensure uniform distribution in volume: r^3 = z * r_inner^3 + (1-z) * r_outer^3, where z is uniform random [0,1]. """ np.random.seed(self.base_seed + 2 if self.base_seed is not None else None) z = np.random.random(len(sampled_packets_df)) initial_velocities = ( z * sampled_packets_df["inner_velocity"] ** 3.0 + (1.0 - z) * sampled_packets_df["outer_velocity"] ** 3.0 ) ** (1.0 / 3.0) return initial_velocities
[docs] def create_packet_nus( self, packets: pd.DataFrame, positronium_fraction: float, number_of_packets: int, ) -> np.ndarray: """ Create packet frequency-energies accounting for positronium formation. Generates an array of packet frequency-energies (E = h * nu) considering positronium formation and its decay modes for positron annihilation lines. Parameters ---------- packets : pd.DataFrame DataFrame containing packet information with 'radiation_energy_keV' column. positronium_fraction : float Fraction of positrons that form positronium (0.0 to 1.0). Default is 0.0 for no positronium formation. number_of_packets : int Number of packets to generate frequency-energies for. Returns ------- np.ndarray Array of sampled frequency-energies [keV] with length number_of_packets. Notes ----- For positron annihilation lines (511 keV), this method: - Determines if positronium forms based on positronium_fraction - For ortho-positronium: samples from 3-photon decay spectrum - For para-positronium: uses the 511 keV line energy - For direct annihilation: uses the original 511 keV energy The para/ortho ratio is set by PARA_TO_ORTHO_RATIO constant (0.25). """ energy_array = np.zeros(number_of_packets) all_packets = np.array([True] * number_of_packets) # positronium formation if fraction is greater than zero positronium_formation = ( np.random.uniform(0, 1, number_of_packets) < positronium_fraction ) # annihilation line of positrons annihilation_line = packets["radiation_energy_keV"] == POSITRON_ANNIHILATION_LINE # three photon decay of positronium three_photon_decay = np.random.random(number_of_packets) > PARA_TO_ORTHO_RATIO energy_array[all_packets] = packets.loc[ all_packets, "radiation_energy_keV" ] energy_array[ positronium_formation & annihilation_line & three_photon_decay ] = PositroniumSampler().sample_energy( samples=np.sum( positronium_formation & annihilation_line & three_photon_decay ) ) energy_array[ positronium_formation & annihilation_line & ~three_photon_decay ] = POSITRON_ANNIHILATION_LINE return energy_array
[docs] def create_packet_directions( self, no_of_packets: int, seed: int | None ) -> np.ndarray: """ Create random isotropic directions for packets. Generates an array of random unit vectors representing isotropic directions for gamma ray packets. Parameters ---------- no_of_packets : int Number of packets to generate directions for. seed : int or None Random seed for reproducible direction generation. If None, uses current random state. Returns ------- np.ndarray Array of shape (3, no_of_packets) containing unit direction vectors. Each column represents a 3D unit vector [x, y, z]. Notes ----- Directions are sampled uniformly on the unit sphere to ensure isotropic distribution in 3D space. """ directions = get_random_unit_vectors(no_of_packets, seed) return directions
[docs] def create_packet_energies(self, no_of_packets: int, energy: float) -> np.ndarray: """ Create uniform packet energies for gamma ray packets. Generates an array of identical packet energies for a specified number of packets. Parameters ---------- no_of_packets : int Number of packets to create energies for. energy : float Energy value [erg] to assign to each packet. Returns ------- np.ndarray Array of packet energies [erg] with length no_of_packets, where each element equals the input energy value. Notes ----- This method creates uniform energy packets, where each packet carries the same energy regardless of the specific gamma ray line that created it. The total energy is conserved through the packet weighting system. """ return np.ones(no_of_packets) * energy
[docs] def create_packet_times_uniform_time( self, no_of_packets: int, start: float, end: float ) -> np.ndarray: """ Sample packet decay times uniformly within a time interval. Generates decay times uniformly distributed between start and end times. This approach requires non-uniform packet energies to maintain energy conservation. Parameters ---------- no_of_packets : int Number of packets to generate decay times for. start : float Start time [s] of the sampling interval. end : float End time [s] of the sampling interval. Returns ------- np.ndarray Array of decay times [s] with length no_of_packets, uniformly distributed between start and end. Notes ----- This method samples decay times uniformly in time, which means the packet energies must be weighted according to the decay rate at each time to properly represent the physical decay process. """ z = np.random.random(no_of_packets) decay_times = z * start + (1 - z) * end return decay_times
[docs] def create_packet_times_uniform_energy( self, no_of_packets: np.ndarray, isotopes: pd.Series, decay_time: np.ndarray ) -> np.ndarray: """ Sample decay times from isotope mean lifetimes using rejection sampling. Generates decay times by sampling from exponential distributions based on isotope mean lifetimes, constrained to specific time intervals. Parameters ---------- no_of_packets : np.ndarray Array indices for the packets (used for iteration). isotopes : pd.Series Series containing parent isotope names for each packet. decay_time : np.ndarray Array of time step indices indicating the time interval for each packet's decay. Returns ------- np.ndarray Array of decay times [s] sampled from exponential distributions constrained to the appropriate time intervals. Notes ----- This method uses rejection sampling to ensure decay times fall within the correct time bins. For each packet: 1. Determines the time interval [t_min, t_max] from decay_time index 2. Samples from exponential distribution: t = -tau * ln(random) 3. Rejects and resamples if t is outside the interval Requires self.taus attribute containing isotope mean lifetimes. """ decay_times = np.zeros(len(no_of_packets)) for i, isotope in enumerate(isotopes.to_numpy()): decay_time_min = self.times[decay_time[i]] if decay_time_min == self.times[-1]: decay_time_max = self.effective_times[-1] else: decay_time_max = self.times[decay_time[i] + 1] # rejection sampling while (decay_times[i] <= decay_time_min) or ( decay_times[i] >= decay_time_max ): decay_times[i] = -self.taus[isotope] * np.log( np.random.random() ) return decay_times
[docs] def create_packets( self, cumulative_decays_df: pd.DataFrame, number_of_packets: int, legacy_energy_per_packet: float | None = None, ) -> GXPacketCollection: """ Initialize a collection of gamma ray packets for simulation. Creates a collection of gamma ray packets from radioactive decay data, including proper spatial distribution, directional sampling, energy assignment, and Doppler corrections. Parameters ---------- cumulative_decays_df : pd.DataFrame DataFrame containing cumulative decay data with columns including 'radiation', 'decay_energy_erg', and multi-level index with 'isotope', 'shell_number', and 'time_index'. number_of_packets : int Total number of gamma ray packets to create for the simulation. legacy_energy_per_packet : float, optional Legacy energy per packet [erg] for backwards compatibility. If None, energy per packet is calculated from total gamma ray energy divided by number of packets. Default is None. Returns ------- GXPacketCollection Collection of gamma ray packets with initialized properties: - locations: 3D positions in the simulation domain - directions: isotropic unit direction vectors - energies: rest frame and comoving frame energies - frequencies: rest frame and comoving frame frequencies - metadata: shell numbers, decay times, source isotopes Notes ----- The packet creation process includes: 1. **Energy calculation**: Total gamma ray energy is divided equally among packets (uniform energy approach) 2. **Spatial sampling**: Packets are distributed within shells based on decay energy weighting 3. **Temporal placement**: Packets are positioned at decay times with appropriate radial expansion 4. **Spectral sampling**: Frequencies include positronium formation effects for 511 keV annihilation lines 5. **Doppler corrections**: Applied for relativistic motion between rest and comoving frames The method ensures energy conservation while providing proper statistical sampling of the decay process. """ # Calculate energy per packet if legacy_energy_per_packet is None: gamma_df = self.cumulative_decays_df[ self.cumulative_decays_df["radiation"] == "g" ] total_energy_gamma = gamma_df["decay_energy_erg"].sum() energy_per_packet = total_energy_gamma / number_of_packets else: energy_per_packet = legacy_energy_per_packet total_energy_gamma = number_of_packets * legacy_energy_per_packet logger.info("Total energy in gamma-rays is %s", total_energy_gamma) logger.info("Energy per packet is %s", energy_per_packet) # initialize arrays for most packet properties locations = np.zeros((3, number_of_packets)) directions = np.zeros((3, number_of_packets)) packet_energies_rf = np.zeros(number_of_packets) packet_energies_cmf = np.zeros(number_of_packets) nus_rf = np.zeros(number_of_packets) nus_cmf = np.zeros(number_of_packets) statuses = np.ones(number_of_packets, dtype=np.int64) * 3 # sample packets from the gamma-ray lines only (include X-rays!) sampled_packets_df_gamma = cumulative_decays_df[ cumulative_decays_df["radiation"] == "g" ] # sample packets from the time evolving dataframe sampled_packets_df = sampled_packets_df_gamma.sample( n=number_of_packets, weights="decay_energy_erg", replace=True, random_state=np.random.RandomState(self.base_seed), ) # get the isotopes and shells of the sampled packets source_isotopes = sampled_packets_df.index.get_level_values("isotope") shells = sampled_packets_df.index.get_level_values("shell_number") # get the inner and outer velocity boundaries for each packet to compute sampled_packets_df["inner_velocity"] = self.inner_velocities[shells] sampled_packets_df["outer_velocity"] = self.outer_velocities[shells] # The radii of the packets at what ever time they are emitted initial_velocities = self.create_packet_velocities(sampled_packets_df) # get the time step index of the packets decay_time_indices = sampled_packets_df.index.get_level_values("time_index") effective_decay_times = self.times[decay_time_indices] # scale radius by packet decay time. This could be replaced with # Geometry object calculations. Note that this also adds a random # unit vector multiplication for 3D. May not be needed. locations = ( initial_velocities.values * effective_decay_times * self.create_packet_directions(number_of_packets, seed=self.base_seed) ) # sample directions (valid at all times), non-relativistic # the seed is changed to not have packets that are all going outwards as the # create_packet_directions method is also used for the location sampling directions_seed = self.base_seed + 1 if self.base_seed is not None else None directions = self.create_packet_directions( number_of_packets, seed=directions_seed ) # the individual gamma-ray energy that makes up a packet # co-moving frame, including positronium formation nu_energies_cmf = self.create_packet_nus( sampled_packets_df, self.positronium_fraction, number_of_packets, ) nus_cmf = nu_energies_cmf / H_CGS_KEV packet_energies_cmf = self.create_packet_energies( number_of_packets, energy_per_packet ) packet_energies_rf = np.zeros(number_of_packets) nus_rf = np.zeros(number_of_packets) doppler_factors = doppler_factor_3D_all_packets( directions, locations, effective_decay_times ) packet_energies_rf = packet_energies_cmf / doppler_factors nus_rf = nus_cmf / doppler_factors return GXPacketCollection( locations, directions, packet_energies_rf, packet_energies_cmf, nus_rf, nus_cmf, statuses, shells, effective_decay_times, decay_time_indices, source_isotopes=source_isotopes, )
[docs] def legacy_calculate_positron_fraction( isotope_decay_df: pd.DataFrame, isotopes: np.ndarray, number_of_packets: int ) -> np.ndarray: """ Calculate positron kinetic energy fraction relative to gamma ray energy. Computes the fraction of energy released as positron kinetic energy compared to gamma ray energy for each isotope associated with packets. Parameters ---------- isotope_decay_df : pd.DataFrame DataFrame containing isotope decay data with multi-level index including 'isotope' and 'shell_number', and columns including 'radiation', 'energy_per_channel_keV'. isotopes : np.ndarray Array of isotope names as strings, where each isotope is associated with a packet. number_of_packets : int Total number of gamma ray packets in the simulation. Returns ------- np.ndarray Array of positron energy fractions with length number_of_packets. Each element represents the ratio of positron kinetic energy to gamma ray energy for the corresponding packet's source isotope. Notes ----- This function: 1. Filters decay data for shell_number == 0 to avoid double counting 2. Separates gamma ray ('g') and beta plus ('bp') radiation channels 3. Sums energy per isotope for each radiation type 4. Calculates fraction = E_positron / E_gamma for each isotope 5. Maps isotope fractions to packet array Isotopes not present in the decay DataFrame receive a fraction of 0.0. This is used for legacy compatibility and may be deprecated in favor of more sophisticated positron energy modeling. """ isotope_positron_fraction = np.zeros(number_of_packets) # Find the positron fraction from the zeroth shell of the dataframe # this is because the total positron kinetic energy is the same for all shells shell_number_0 = isotope_decay_df[ isotope_decay_df.index.get_level_values("shell_number") == 0 ] gamma_decay_df = shell_number_0[shell_number_0["radiation"] == "g"] positrons_decay_df = shell_number_0[shell_number_0["radiation"] == "bp"] # Find the total energy released from positrons per isotope from the dataframe positron_energy_per_isotope = positrons_decay_df.groupby("isotope")[ "energy_per_channel_keV" ].sum() # Find the total energy released from gamma-ray per isotope from the dataframe # TODO: Can be tested with total energy released from all radiation types gamma_energy_per_isotope = gamma_decay_df.groupby("isotope")[ "energy_per_channel_keV" ].sum() # TODO: Possibly move this for loop for i, isotope in enumerate(isotopes): if ( isotope in positron_energy_per_isotope ): # check if isotope is in the dataframe isotope_positron_fraction[i] = ( positron_energy_per_isotope[isotope] / gamma_energy_per_isotope[isotope] ) return isotope_positron_fraction