Bibliography and Glossary

Bibliography

[Hub69]

J. H. Hubbell. Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 kev to 100 gev. NSRDS-NBS, 1969.

[JR76]

J. M Jauch and F Rohrlich. The Theory of Photons and Electrons: the Relativistic Quantum Field Theory of Charged Particles with Spin One-half. Springer Berlin Heidelberg, Berlin, Heidelberg, 1976. ISBN 978-3-642-80951-4 978-3-642-80953-8. OCLC: 840300942. URL: https://doi.org/10.1007/978-3-642-80951-4 (visited on 2022-07-27).

[KS09]

M. Kromer and S. A. Sim. Time-dependent three-dimensional spectrum synthesis for type ia supernovae. Monthly Notices of the Royal Astronomical Society, 398(4):1809–1826, October 2009. URL: http://dx.doi.org/10.1111/j.1365-2966.2009.15256.x, doi:10.1111/j.1365-2966.2009.15256.x.

[Sim07]

S. A. Sim. Multidimensional simulations of radiative transfer in type ia supernovae. Monthly Notices of the Royal Astronomical Society, 375(1):154–162, February 2007. URL: http://dx.doi.org/10.1111/j.1365-2966.2006.11271.x, doi:10.1111/j.1365-2966.2006.11271.x.

[Vei73]

Wm.J. Veigele. Photon cross sections from 0.1 kev to 1 mev for elements z = 1 to z = 94. Atomic Data and Nuclear Data Tables, 5(1):51–111, 1973. URL: https://www.sciencedirect.com/science/article/pii/S0092640X73800154, doi:https://doi.org/10.1016/S0092-640X(73)80015-4.

[Wei95]

Steven Weinberg. The Quantum Theory of Fields. Cambridge University Press, 1995.

[WSP20]

Rainer Weinberger, Volker Springel, and Rüdiger Pakmor. The arepo public code release. The Astrophysical Journal Supplement Series, 248(2):32, Jun 2020. URL: http://dx.doi.org/10.3847/1538-4365/ab908c, doi:10.3847/1538-4365/ab908c.

[AbbottLucy85]

D. C. Abbott and L. B. Lucy. Multiline transfer and the dynamics of stellar winds. Astrophysical Journal, 288:679–693, January 1985. doi:10.1086/162834.

[AmbwaniSutherland88]

Kailash Ambwani and Peter Sutherland. Gamma-Ray Spectra and Energy Deposition for Type IA Supernovae. \apj , 325:820, February 1988. doi:10.1086/166052.

[BjorkmanWood01]

J. E. Bjorkman and K. Wood. Radiative Equilibrium and Temperature Correction in Monte Carlo Radiation Transfer. Astrophysical Journal, 554:615–623, June 2001. arXiv:astro-ph/0103249, doi:10.1086/321336.

[BoyleSimHachingerKerzendorf17]

A. Boyle, S. A. Sim, S. Hachinger, and W. Kerzendorf. Helium in double-detonation models of type ia supernovae. Astronomy and Astrophysics, 599:A46, March 2017. arXiv:1611.05938, doi:10.1051/0004-6361/201629712.

[CarterCashwell75]

L. L. Carter and E. Cashwell. Particle-transport simulation with the Monte Carlo method. Technical Report, Los Alamos Scientific Laboratory, 1975. URL: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/07/227/7227109.pdf.

[KalosWhitlock08]

M. H. Kalos and P. A. Whitlock. Monte Carlo Methods: Second Revised and Enlarged Edition. Wiley-VCH Verlag, 2008.

[KerzendorfSim14]

W. E. Kerzendorf and S. A. Sim. A spectral synthesis code for rapid modelling of supernovae. Monthly Notices of the RAS, 440:387–404, May 2014. arXiv:1401.5469, doi:10.1093/mnras/stu055.

[LongKnigge02]

K. S. Long and C. Knigge. Modeling the Spectral Signatures of Accretion Disk Winds: A New Monte Carlo Approach. Astrophysical Journal, 579:725–740, November 2002. arXiv:arXiv:astro-ph/0208011, doi:10.1086/342879.

[Lucy99a]

L. B. Lucy. Computing radiative equilibria with Monte Carlo techniques. Astronomy and Astrophysics, 344:282–288, April 1999.

[Lucy99b]

L. B. Lucy. Improved Monte Carlo techniques for the spectral synthesis of supernovae. Astronomy and Astrophysics, 345:211–220, May 1999.

[Lucy02]

L. B. Lucy. Monte Carlo transition probabilities. Astronomy and Astrophysics, 384:725–735, March 2002. arXiv:arXiv:astro-ph/0107377, doi:10.1051/0004-6361:20011756.

[Lucy03]

L. B. Lucy. Monte Carlo transition probabilities. II. Astronomy and Astrophysics, 403:261–275, May 2003. arXiv:arXiv:astro-ph/0303202, doi:10.1051/0004-6361:20030357.

[Lucy05]

L. B. Lucy. Monte Carlo techniques for time-dependent radiative transfer in 3-D supernovae. Astronomy and Astrophysics, 429:19–30, January 2005. arXiv:arXiv:astro-ph/0409249, doi:10.1051/0004-6361:20041656.

[MazzaliLucy93]

P. A. Mazzali and L. B. Lucy. The application of Monte Carlo methods to the synthesis of early-time supernovae spectra. Astronomy and Astrophysics, 279:447–456, November 1993.

[MilneHungerfordFryer+04]

P. A. Milne, A. L. Hungerford, C. L. Fryer, T. M. Evans, T. J. Urbatsch, S. E. Boggs, J. Isern, E. Bravo, A. Hirschmann, S. Kumagai, P. A. Pinto, and L. -S. The. Unified One-Dimensional Simulations of Gamma-Ray Line Emission from Type Ia Supernovae. \apj , 613(2):1101–1119, October 2004. arXiv:astro-ph/0406173, doi:10.1086/423235.

[Nadyozhin94]

D. K. Nadyozhin. The Properties of NI CO Fe Decay. \apjs , 92:527, June 1994. doi:10.1086/192008.

[Noebauer14]

U. M. Noebauer. A Monte Carlo Approach to Radiation Hydrodynamics in Stellar Outflows. Dissertation, Technische Universität München, München, 2014. URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20140731-1219398-0-8.

[OrePowell49]

A. Ore and J. L. Powell. Three-Photon Annihilation of an Electron-Positron Pair. Physical Review, 75(11):1696–1699, June 1949. doi:10.1103/PhysRev.75.1696.

[SimProgaMiller+10]

S. A. Sim, D. Proga, L. Miller, K. S. Long, and T. J. Turner. Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - III. Application to a hydrodynamical simulation. Monthly Notices of the RAS, 408:1396–1408, November 2010. arXiv:1006.3449, doi:10.1111/j.1365-2966.2010.17215.x.

Glossary

Chianti

CHIANTI consists of a critically evaluated set of up-to-date atomic data, together with user-friendly programs written in Interactive Data Language (IDL) and Python to calculate the spectra from astrophysical plasmas.

Estimator

A statistical tool or algorithm used in Monte Carlo simulations to calculate physical quantities. In the case of TARDIS this is usually the estimation of radiation field properties based on the behavior and distribution of photon packets.

Grey Opacity

A simplified opacity model where the absorption coefficient is assumed to be independent of photon wavelength or frequency, making calculations more tractable.

HDF (Hierarchical Data Format)

A file format designed for storing and organizing large amounts of scientific data in a hierarchical structure, commonly used with the .h5 extension.

Kurucz

A comprehensive database of atomic line data compiled by Robert Kurucz, widely used in stellar and supernova atmosphere modeling for opacity calculations.

Meta-Stable

Metastability is the condition of a system where the system has stability, but is not as stable as in the system’s state of least energy. In atomic physics, this is term is usually used to describe excitation states that have long spontaneous emission timescales, which corresponds to low oscillator strengths of transitions away from the metastable state.

Monte Carlo

A computational method that uses random sampling to solve complex physical problems, particularly useful for simulating particle transport and radiative transfer.

Nebular

Relating to the nebular phase of supernovae, typically occurring weeks to months after explosion when the ejecta becomes optically thin and emission lines dominate the spectrum. In TARDIS, this may also refer to adjustments to LTE assumptions to handle lower density environments, which are often applicable to supernova ejecta.

Opacity

A measure of how opaque or transparent a material is to electromagnetic radiation, quantifying the probability of photon absorption or scattering per unit path length.

Packets

In Monte Carlo radiative transfer simulations, discrete bundles of energy or photons that are tracked as they propagate through the computational domain and interact with matter.

Seed

A numerical value used to initialize random number generators, ensuring reproducibility of Monte Carlo simulations when the same seed is used.

Synapps

SYNAPPS is an open-source spectrum fitter embedding a highly parameterized synthetic SN spectrum calculation within a parallel asynchronous optimizer, created to systematically interpret large sets of SN spectroscopy data.

TOML

TOML (Tom’s Obvious, Minimal Language) is a minimal configuration file format that is designed to be easy to read due to obvious semantics. It is designed to map unambiguously to a hash table and to be easy to parse into data structures in a wide variety of languages. TOML files have the ending “.toml”.

YAML

YAML (YAML Ain’t Markup Language) is a human friendly data serialization standard for all programming languages. It is commonly used for configuration files and in applications where data is being stored or transmitted. YAML files have the ending “.yml”.