References and Glossary



J. M Jauch and F Rohrlich. The Theory of Photons and Electrons: the Relativistic Quantum Field Theory of Charged Particles with Spin One-half. Springer Berlin Heidelberg, Berlin, Heidelberg, 1976. ISBN 978-3-642-80951-4 978-3-642-80953-8. OCLC: 840300942. URL: (visited on 2022-07-27).


Rainer Weinberger, Volker Springel, and Rüdiger Pakmor. The arepo public code release. The Astrophysical Journal Supplement Series, 248(2):32, Jun 2020. URL:, doi:10.3847/1538-4365/ab908c.


D. C. Abbott and L. B. Lucy. Multiline transfer and the dynamics of stellar winds. Astrophysical Journal, 288:679–693, January 1985. doi:10.1086/162834.


J. E. Bjorkman and K. Wood. Radiative Equilibrium and Temperature Correction in Monte Carlo Radiation Transfer. Astrophysical Journal, 554:615–623, June 2001. arXiv:astro-ph/0103249, doi:10.1086/321336.


A. Boyle, S. A. Sim, S. Hachinger, and W. Kerzendorf. Helium in double-detonation models of type ia supernovae. Astronomy and Astrophysics, 599:A46, March 2017. arXiv:1611.05938, doi:10.1051/0004-6361/201629712.


L. L. Carter and E. Cashwell. Particle-transport simulation with the Monte Carlo method. Technical Report, Los Alamos Scientific Laboratory, 1975. URL:


M. H. Kalos and P. A. Whitlock. Monte Carlo Methods: Second Revised and Enlarged Edition. Wiley-VCH Verlag, 2008.


W. E. Kerzendorf and S. A. Sim. A spectral synthesis code for rapid modelling of supernovae. Monthly Notices of the RAS, 440:387–404, May 2014. arXiv:1401.5469, doi:10.1093/mnras/stu055.


K. S. Long and C. Knigge. Modeling the Spectral Signatures of Accretion Disk Winds: A New Monte Carlo Approach. Astrophysical Journal, 579:725–740, November 2002. arXiv:arXiv:astro-ph/0208011, doi:10.1086/342879.


L. B. Lucy. Computing radiative equilibria with Monte Carlo techniques. Astronomy and Astrophysics, 344:282–288, April 1999.


L. B. Lucy. Improved Monte Carlo techniques for the spectral synthesis of supernovae. Astronomy and Astrophysics, 345:211–220, May 1999.


L. B. Lucy. Monte Carlo transition probabilities. Astronomy and Astrophysics, 384:725–735, March 2002. arXiv:arXiv:astro-ph/0107377, doi:10.1051/0004-6361:20011756.


L. B. Lucy. Monte Carlo transition probabilities. II. Astronomy and Astrophysics, 403:261–275, May 2003. arXiv:arXiv:astro-ph/0303202, doi:10.1051/0004-6361:20030357.


L. B. Lucy. Monte Carlo techniques for time-dependent radiative transfer in 3-D supernovae. Astronomy and Astrophysics, 429:19–30, January 2005. arXiv:arXiv:astro-ph/0409249, doi:10.1051/0004-6361:20041656.


P. A. Mazzali and L. B. Lucy. The application of Monte Carlo methods to the synthesis of early-time supernovae spectra. Astronomy and Astrophysics, 279:447–456, November 1993.


P. A. Milne, A. L. Hungerford, C. L. Fryer, T. M. Evans, T. J. Urbatsch, S. E. Boggs, J. Isern, E. Bravo, A. Hirschmann, S. Kumagai, P. A. Pinto, and L. -S. The. Unified One-Dimensional Simulations of Gamma-Ray Line Emission from Type Ia Supernovae. \apj , 613(2):1101–1119, October 2004. arXiv:astro-ph/0406173, doi:10.1086/423235.


U. M. Noebauer. A Monte Carlo Approach to Radiation Hydrodynamics in Stellar Outflows. Dissertation, Technische Universität München, München, 2014. URL:


A. Ore and J. L. Powell. Three-Photon Annihilation of an Electron-Positron Pair. Physical Review, 75(11):1696–1699, June 1949. doi:10.1103/PhysRev.75.1696.


S. A. Sim, D. Proga, L. Miller, K. S. Long, and T. J. Turner. Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - III. Application to a hydrodynamical simulation. Monthly Notices of the RAS, 408:1396–1408, November 2010. arXiv:1006.3449, doi:10.1111/j.1365-2966.2010.17215.x.



CHIANTI consists of a critically evaluated set of up-to-date atomic data, together with user-friendly programs written in Interactive Data Language (IDL) and Python to calculate the spectra from astrophysical plasmas.


Metastability is the condition of a system where the system has stability, but is not as stable as in the system’s state of least energy.


SYNAPPS is an open-source spectrum fitter embedding a highly parameterized synthetic SN spectrum calculation within a parallel asynchronous optimizer, created to systematically interpret large sets of SN spectroscopy data.


TOML (Tom’s Obvious, Minimal Language) is a minimal configuration file format that is designed to be easy to read due to obvious semantics. It is designed to map unambiguously to a hash table and to be easy to parse into data structures in a wide variety of languages. TOML files have the ending “.toml”.


YAML (YAML Ain’t Markup Language) is a human friendly data serialization standard for all programming languages. It is commonly used for configuration files and in applications where data is being stored or transmitted. YAML files have the ending “.yml”.