You can interact with this notebook online: Launch notebook
Example Usage of HDFWriter¶
If properties of a class needs to be saved in a hdf file, then the class should inherit from HDFWriterMixin
as demonstrated below.
hdf_properties (list)
: Contains names of all the properties that needs to be saved. hdf_name (str)
: Specifies the default name of the group under which the properties will be saved.
[1]:
from tardis.io.util import HDFWriterMixin
class ExampleClass(HDFWriterMixin):
hdf_properties = ['property1', 'property2']
hdf_name = 'mock_setup'
def __init__(self, property1, property2):
self.property1 = property1
self.property2 = property2
[2]:
import numpy as np
import pandas as pd
#Instantiating Object
property1 = np.array([4.0e14, 2, 2e14, 27.5])
property2 = pd.DataFrame({'one': pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
'two': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])})
obj = ExampleClass(property1, property2)
You can now save properties using to_hdf
method.
Parameters¶
file_path
: Path where the HDF file will be saved path
: Path inside the HDF store to store the elements
name
: Name of the group inside HDF store, under which properties will be saved. If not specified , then it uses the value specified in hdf_name
attribute. If hdf_name
is also not defined , then it converts the Class name into Snake Case, and uses this value. Like for example , if name
is not passed as an argument , and hdf_name
is also not defined for
ExampleClass
above, then , it will save properties under example_class
group.
[3]:
obj.to_hdf(file_path='test.hdf', path='test')
#obj.to_hdf(file_path='test.hdf', path='test', name='hdf')
You can now read hdf file using pd.HDFStore
, or pd.read_hdf
[4]:
#Read HDF file
with pd.HDFStore('test.hdf','r') as data:
print data
#print data['/test/mock_setup/property1']
<class 'pandas.io.pytables.HDFStore'>
File path: test.hdf
/test/mock_setup/property1 series (shape->[4])
/test/mock_setup/property2 frame (shape->[4,2])
Saving nested class objects.¶
Just extend hdf_properties
list to include that class object.
[5]:
class NestedExampleClass(HDFWriterMixin):
hdf_properties = ['property1', 'nested_object']
def __init__(self, property1, nested_obj):
self.property1 = property1
self.nested_object = nested_obj
[6]:
obj2 = NestedExampleClass(property1, obj)
[7]:
obj2.to_hdf(file_path='nested_test.hdf')
[8]:
#Read HDF file
with pd.HDFStore('nested_test.hdf','r') as data:
print data
<class 'pandas.io.pytables.HDFStore'>
File path: nested_test.hdf
/nested_example_class/nested_object/property1 series (shape->[4])
/nested_example_class/nested_object/property2 frame (shape->[4,2])
/nested_example_class/property1 series (shape->[4])
Modified Usage¶
In BasePlasma
class, the way properties of object are collected is different. It does not uses hdf_properties
attribute. That`s why , PlasmaWriterMixin
(which extends HDFWriterMixin
) changes how the properties of BasePlasma
class will be collected, by changing get_properties
function.
Here is a quick demonstration, if behaviour of default get_properties
function inside HDFWriterMixin
needs to be changed, by subclassing it to create a new Mixin
.
[9]:
class ModifiedWriterMixin(HDFWriterMixin):
def get_properties(self):
#Change behaviour here, how properties will be collected from Class
data = {name: getattr(self, name) for name in self.outputs}
return data
A demo class , using this modified mixin.
[10]:
class DemoClass(ModifiedWriterMixin):
outputs = ['property1']
hdf_name = 'demo'
def __init__(self, property1):
self.property1 = property1
[11]:
obj3 = DemoClass('random_string')
obj3.to_hdf('demo_class.hdf')
with pd.HDFStore('demo_class.hdf','r') as data:
print data
<class 'pandas.io.pytables.HDFStore'>
File path: demo_class.hdf
/demo/scalars series (shape->[1])