You can interact with this notebook online: Launch notebook
Convergence Plots¶
These convergence plots help diagnose the quality of TARDIS simulation results:
The plasma plots show radiation temperature and dilution factor across velocity space, indicating when the radiation field reaches equilibrium throughout the ejecta. When lines stop changing between iterations, physical conditions have converged.
The luminosity plots track:
Inner boundary temperature stabilization
Whether emitted luminosity matches requested luminosity (energy conservation)
Residual luminosity percentage (ideally <5%)
Properly converged plots indicate your synthetic spectrum is based on a physically self-consistent model, making it reliable for comparison with observed supernova spectra. Poor convergence suggests you may need to adjust model parameters or extend the number of iterations.
The Convergence Plots consist of two Plotly FigureWidget Subplots, the plasma_plot
and the t_inner_luminosities_plot
. The plots can be displayed by setting the show_convergence_plots
option in the run_tardis
function to True
. The plots are stored in the convergence_plots
attribute of the simulation object sim
and can be accessed using sim.convergence_plots.plasma_plot
and sim.convergence_plots.t_inner_luminosities_plot
.
Note
You only need to include export_convergence_plots=True
in the run_tardis
function when you want to share the notebook. The function shows the plot using the Plotly notebook_connected
renderer, which helps display the plot online. You don’t need to do it when running the notebook locally.
[1]:
import numpy as np
import plotly.graph_objects as go
from astropy import units as u
import tardis.visualization.plot_util as pu
from tardis import run_tardis
from tardis.io.atom_data import download_atom_data
/home/runner/work/tardis/tardis/tardis/__init__.py:23: UserWarning: Astropy is already imported externally. Astropy should be imported after TARDIS.
warnings.warn(
Every simulation run requires atomic data and a configuration file.
Atomic Data¶
We recommend using the kurucz_cd23_chianti_H_He.h5 dataset.
[2]:
# We download the atomic data needed to run the simulation
download_atom_data("kurucz_cd23_chianti_H_He")
Configuration File /home/runner/.astropy/config/tardis_internal_config.yml does not exist - creating new one from default
CRITICAL:root:
********************************************************************************
TARDIS will download different kinds of data (e.g. atomic) to its data directory /home/runner/Downloads/tardis-data
TARDIS DATA DIRECTORY not specified in /home/runner/.astropy/config/tardis_internal_config.yml:
ASSUMING DEFAULT DATA DIRECTORY /home/runner/Downloads/tardis-data
YOU CAN CHANGE THIS AT ANY TIME IN /home/runner/.astropy/config/tardis_internal_config.yml
********************************************************************************
WARNING:tardis.io.atom_data.atom_web_download:Atomic Data kurucz_cd23_chianti_H_He already exists in /home/runner/Downloads/tardis-data/kurucz_cd23_chianti_H_He.h5. Will not download - override with force_download=True.
Example Configuration File¶
The configuration file tardis_example.yml is used throughout this Quickstart.
[3]:
!wget -q -nc https://raw.githubusercontent.com/tardis-sn/tardis/master/docs/tardis_example.yml
[4]:
!cat tardis_example.yml
# Example YAML configuration for TARDIS
tardis_config_version: v1.0
supernova:
luminosity_requested: 9.44 log_lsun
time_explosion: 13 day
atom_data: kurucz_cd23_chianti_H_He.h5
model:
structure:
type: specific
velocity:
start: 1.1e4 km/s
stop: 20000 km/s
num: 20
density:
type: branch85_w7
abundances:
type: uniform
O: 0.19
Mg: 0.03
Si: 0.52
S: 0.19
Ar: 0.04
Ca: 0.03
plasma:
disable_electron_scattering: no
ionization: lte
excitation: lte
radiative_rates_type: dilute-blackbody
line_interaction_type: macroatom
montecarlo:
seed: 23111963
no_of_packets: 4.0e+4
iterations: 20
nthreads: 1
last_no_of_packets: 1.e+5
no_of_virtual_packets: 10
convergence_strategy:
type: damped
damping_constant: 1.0
threshold: 0.05
fraction: 0.8
hold_iterations: 3
t_inner:
damping_constant: 0.5
spectrum:
start: 500 angstrom
stop: 20000 angstrom
num: 10000
Callback Function¶
Callback function to extract luminosity, radiation temperature, and dilution factor at each simulation iteration.
[5]:
emitted_luminosity = []
absorbed_luminosity = []
t_rad = []
w = []
def fetch_simulation_properties(simulation):
emitted_luminosity.append(np.copy(simulation.emitted_luminosity.value))
absorbed_luminosity.append(np.copy(simulation.reabsorbed_luminosity.value))
t_rad.append(np.copy(simulation.simulation_state.t_radiative.value))
w.append(np.copy(simulation.simulation_state.dilution_factor))
Running the Simulation¶
To run the simulation, import the run_tardis
function and create the sim
object.
Note:
Get more information about the progress bars, logging configuration, and convergence plots.
[6]:
sim = run_tardis(
"tardis_example.yml",
log_level="ERROR",
simulation_callbacks=[(fetch_simulation_properties,)],
)
Preparing Luminosity and Temperature Data¶
[7]:
luminosity_requested = sim.luminosity_requested
velocity_km_s = np.copy(sim.simulation_state.velocity.to(u.km / u.s).value)
luminosities = ["Emitted", "Absorbed", "Requested"]
value_data = {
"Emitted": emitted_luminosity,
"Absorbed": absorbed_luminosity,
"Requested": [luminosity_requested.value] * sim.iterations,
"t_inner": np.copy(sim.iterations_t_inner.value),
}
Visualization¶
Plasma Plot¶
[8]:
plasma_colorscale = pu.get_hex_color_strings(sim.iterations)
fig = go.FigureWidget().set_subplots(rows=1, cols=2, shared_xaxes=True)
# empty traces to build figure
fig.add_scatter(row=1, col=1)
fig.add_scatter(row=1, col=2)
# 2 y axes and 2 x axes correspond to the 2 subplots in the plasma plot
fig = fig.update_layout(
xaxis={
"tickformat": "g",
"title": pu.axis_label_in_latex("Velocity", u.km / u.s),
},
xaxis2={
"tickformat": "g",
"title": pu.axis_label_in_latex("Velocity", u.km / u.s),
"matches": "x",
},
yaxis={
"tickformat": "g",
"title": pu.axis_label_in_latex("T_{rad}", u.K, only_text=False),
"nticks": 15,
},
yaxis2={
"tickformat": "g",
"title": r"$W$",
"nticks": 15,
},
height=450,
legend_title_text="Iterations",
legend_traceorder="reversed",
margin=dict(
l=10, r=135, b=25, t=25, pad=0
), # reduce whitespace surrounding the plot and increase right indentation to align with the t_inner and luminosity plot
)
plasma_plot = fig
for iter_num in range(sim.iterations):
# add luminosity data in hover data in plasma plots
customdata = len(velocity_km_s) * [
(
"<br>"
"Emitted Luminosity: "
f"{emitted_luminosity[iter_num]:.4g}"
"<br>"
"Requested Luminosity: "
f"{luminosity_requested:.4g}"
"<br>"
"Absorbed Luminosity: "
f"{absorbed_luminosity[iter_num]:.4g}"
)
]
# add a radiation temperature vs shell velocity trace to the plasma plot
plasma_plot.add_scatter(
x=velocity_km_s,
y=np.append(t_rad[iter_num], t_rad[iter_num][-1:]),
line_color=plasma_colorscale[iter_num],
line_shape="hv",
row=1,
col=1,
name=iter_num + 1,
legendgroup=f"group-{iter_num}",
showlegend=False,
customdata=customdata,
hovertemplate="<b>Y</b>: %{y:.3f} at <b>X</b> = %{x:,.0f}%{customdata}",
)
# add a dilution factor vs shell velocity trace to the plasma plot
plasma_plot.add_scatter(
x=velocity_km_s,
y=np.append(w[iter_num], w[iter_num][-1:]),
line_color=plasma_colorscale[iter_num],
line_shape="hv",
row=1,
col=2,
legendgroup=f"group-{iter_num}",
name=iter_num + 1,
customdata=customdata,
hovertemplate="<b>Y</b>: %{y:.3f} at <b>X</b> = %{x:,.0f}%{customdata}",
)
plasma_plot.show(renderer="notebook_connected")
Luminosity Plot¶
[9]:
t_inner_luminosities_colors = pu.get_hex_color_strings(5)
fig = go.FigureWidget().set_subplots(
rows=3,
cols=1,
shared_xaxes=True,
vertical_spacing=0.08,
row_heights=[0.25, 0.5, 0.25],
)
# add inner boundary temperature vs iterations plot
fig.add_scatter(
name="Inner<br>Boundary<br>Temperature",
row=1,
col=1,
hovertext="text",
marker_color=t_inner_luminosities_colors[0],
mode="lines+markers",
)
# add luminosity vs iterations plot
# has three traces for emitted, requested and absorbed luminosities
for luminosity, line_color in zip(
luminosities, t_inner_luminosities_colors[1:4]
):
fig.add_scatter(
name=luminosity + "<br>Luminosity",
mode="lines+markers",
row=2,
col=1,
marker_color=line_color,
)
# add residual luminosity vs iterations plot
fig.add_scatter(
name="Residual<br>Luminosity",
row=3,
col=1,
marker_color=t_inner_luminosities_colors[4],
mode="lines+markers",
)
# 3 y axes and 3 x axes correspond to the 3 subplots in the t_inner and luminosity convergence plot
fig = fig.update_layout(
xaxis=dict(range=[0, sim.iterations + 1], dtick=2),
xaxis2=dict(
matches="x",
range=[0, sim.iterations + 1],
dtick=2,
),
xaxis3=dict(
title=r"$\mbox{Iteration Number}$",
dtick=2,
),
yaxis=dict(
title=pu.axis_label_in_latex("T_{inner}", u.K, only_text=False),
automargin=True,
tickformat="g",
exponentformat="e",
nticks=4,
),
yaxis2=dict(
exponentformat="e",
title=pu.axis_label_in_latex("Luminosity", u.erg / u.s),
title_font_size=13,
automargin=True,
nticks=7,
),
yaxis3=dict(
title=r"$~~\text{Residual}\\\text{Luminosity[%]}$",
title_font_size=12,
automargin=True,
nticks=4,
),
height=630,
hoverlabel_align="right",
margin=dict(b=25, t=25, pad=0), # reduces whitespace surrounding the plot
)
t_inner_luminosities_plot = fig
x = list(range(1, sim.iterations + 1))
with t_inner_luminosities_plot.batch_update():
# traces are updated according to the order they were added
# the first trace is of the inner boundary temperature plot
t_inner_luminosities_plot.data[0].x = x
t_inner_luminosities_plot.data[0].y = value_data["t_inner"]
t_inner_luminosities_plot.data[
0
].hovertemplate = "<b>%{y:.3f}</b> at X = %{x:,.0f}<extra>Inner Boundary Temperature</extra>" # trace name in extra tag to avoid new lines in hoverdata
# the next three for emitted, absorbed and requested luminosities
for index, luminosity in zip(range(1, 4), luminosities):
t_inner_luminosities_plot.data[index].x = x
t_inner_luminosities_plot.data[index].y = value_data[luminosity]
t_inner_luminosities_plot.data[index].hovertemplate = (
"<b>%{y:.4g}</b>" + "<br>at X = %{x}<br>"
)
# last is for the residual luminosity
y = [
((emitted - luminosity_requested.value) * 100)
/ luminosity_requested.value
for emitted in value_data["Emitted"]
]
t_inner_luminosities_plot.data[4].x = x
t_inner_luminosities_plot.data[4].y = y
t_inner_luminosities_plot.data[
4
].hovertemplate = "<b>%{y:.2f}%</b> at X = %{x:,.0f}"
t_inner_luminosities_plot.show(renderer="notebook_connected")