NLTE treatment

NLTE treatment of lines is available both in ~LTEPlasma and the ~NebularPlasma class. This can be enabled by specifying which species should be treated as NLTE with a simple list of tuples (e.g. [(20,1)] for Ca II).

First let’s dive into the basics:

There are two rates to consider from a given level.

\[ \begin{align}\begin{aligned}\begin{split}r_{\textrm{upper}\rightarrow\textrm{lower}} &= \underbrace{A_{ul} n_u}_\textrm{spontaneous emission} + \underbrace{B_{ul} n_u \bar{J}_\nu}_\textrm{stimulated emission} + \underbrace{C_{ul} n_u n_e}_\textrm{collisional deexcitation}\\ &= n_u \underbrace{(A_{ul} + B_{ul}\bar{J}_\nu + C_{ul} n_e)}_{r_{ul}} \\\end{split}\\\begin{split}r_{\textrm{lower}\rightarrow\textrm{upper}} &= \underbrace{B_{lu} n_l \bar{J}_\nu}_\textrm{stimulated absorption} + \underbrace{C_{lu}\,n_l\,n_e}_\textrm{collisional excitation}\\ &= n_l \underbrace{(B_{lu}\bar{J}_\nu + C_{ul}n_e)}_{r_{lu}},\end{split}\end{aligned}\end{align} \]

where \(\bar{J}_\nu\) (in LTE this is \(B(\nu, T)\)) denotes the mean intensity at the frequency of the line and \(n_e\) the number density of electrons.

Next, we calculate the rate of change of a level by adding up all outgoing and all incoming transitions from level \(j\).

\[\frac{dn_j}{dt} = \underbrace{\sum_{i \ne j} r_{ij}}_\textrm{incoming rate} - \underbrace{\sum_{i \ne j} r_{ji}}_\textrm{outgoing rate}\]

In a statistical equilibrium, all incoming rates and outgoing rates add up to 0 (\(\frac{dn_j}{dt}=0\)). We use this to calculate the level populations using the rate coefficients (\(r_ij, r_ji\)).

\[\begin{split}\left( \begin{matrix} -(\cal{r}_{12} + \dots + \cal{r}_{1j}) & \dots & \cal{r}_{j1}\\ \vdots & \ddots & \vdots \\ \cal{r}_{1j} & \dots & - (\cal{r} _{j1} + \dots + \cal{r} _{j, j-1}) \\ \end{matrix} \right) % \left( \begin{matrix} n_1\\ \vdots\\ n_j\\ \end{matrix} \right) % = % \left( \begin{matrix} 0\\ 0\\ 0\\ \end{matrix} \right)\end{split}\]

with the additional constraint that all the level number populations need to add up to the current ion population \(N\), we change this to

\[\begin{split}\left( \begin{matrix} 1 & 1 & \dots \\ \vdots & \ddots & \vdots \\ \cal{r}_{1j} & \dots & - (\cal{r} _{j1} + \dots + \cal{r} _{j, j-1}) \\ \end{matrix} \right) % \left( \begin{matrix} n_1\\ \vdots\\ n_j\\ \end{matrix} \right) % = % \left( \begin{matrix} N\\ 0\\ 0\\ \end{matrix} \right)\end{split}\]

For a three-level atom we have:

\[ \begin{align}\begin{aligned}\begin{split}\frac{dn_1}{dt} &= \underbrace{n_2 r_{21} + n_3 r_{31}}_\textrm{incoming rate} - \underbrace{(n_1 r_{12} + n_1 r_{13})}_\textrm{outgoing rate} = 0\\\end{split}\\\begin{split}\frac{dn_2}{dt} &= \underbrace{n_1 r_{12} + n_3 r_{32}}_\textrm{incoming rate} - \underbrace{(n_2 r_{21} + n_2 r_{23})}_{outgoing rate} = 0\\\end{split}\\\frac{dn_3}{dt} &= \underbrace{n_1 r_{13} + n_2 r_{23}}_\textrm{incoming rate} - \underbrace{(n_3 r_{32} + n_3 r_{31})}_\textrm{outgoing rate} = 0,\end{aligned}\end{align} \]

which can be written in matrix from:

\[\begin{split}\left(\begin{matrix} -(r_{12} + r_{13}) & r_{21} & r_{31}\\ r_{12} & -(r_{21} + r_{23}) & r_{32}\\ r_{13} & r_{23} & -(r_{31} + r_{32}) \\ \end{matrix}\right) \left( \begin{matrix} n_1\\ n_2\\ n_3\\ \end{matrix} \right) = \left( \begin{matrix} 0\\ 0\\ 0\\ \end{matrix} \right)\end{split}\]

To solve for the level populations, we need an additional constraint: \(n_1 + n_2 + n_3 = N\). By setting \(N = 1\), we can get the relative rates:

\[\begin{split}\left(\begin{matrix} 1 & 1 & 1\\ r_{12} & -(r_{21} + r_{23}) & r_{32}\\ r_{13} & r_{23} & -(r_{31} + r_{32}) \\ \end{matrix}\right) \left( \begin{matrix} n_1\\ n_2\\ n_3\\ \end{matrix} \right) = \left( \begin{matrix} 1\\ 0\\ 0\\ \end{matrix} \right)\end{split}\]

Now we go back and look at the rate coefficients used for a level population — as an example \(\frac{dn_2}{dt}\):

\[\begin{split}\frac{dn_2}{dt} &= n_1 r_{12} - n_2 (r_{21} + r_{23}) + n_3 r_{32}\\ &= n_1 B_{12} \bar{J}_{12} + n_1 C_{12} n_e - n_2 A_{21} - n_2 B_{21} \bar{J}_{21} - n_2 C_{21} n_e\\ - n_2 B_{23} \bar{J}_{23} - n_2 C_{23} n_e + n_3 A_{32} + n_3 B_{32} \bar{J}_{32} + n_3 C_{32} n_e,\\ + n_3 A_{32} + n_3 C_{32} n_e,\end{split}\]

Next, we will group the stimulated emission and stimulated absorption terms, as we can assume \(\bar{J_{12}} = \bar{J_{21}}\):

\[\begin{split}\frac{dn_2}{dt} &= n_1 \bigg{(}B_{12} \bar{J}_{12} \underbrace{\bigg{(}1 - \frac{n_2}{n_1}\frac{B_{21}}{B_{12}}\bigg{)}}_\text{stimulated emission term} + C_{12} n_e\bigg{)}\\ - n_2 \bigg{(}A_{21} + C_{23} n_e + n_2 B_{23} \bar{J}_{23} \underbrace{\bigg{(}1 - \frac{n_3}{n_2}\frac{B_{32}}{B_{23}}\bigg{)}}_\text{stimulated emission term}\bigg{)} + n_3 (A_{32} + C_{32} n_e)\end{split}\]